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1 Introduction

This report describes how the derivative-free global optimization method GLIS [1] can be
extended by employing the techniques developed in C-GLISp [2] to handle (i) black-box
constraint functions, and (ii) additional information on whether the function value obtained
must be considered satisfactory or not. The efficiency and effectiveness of the proposed
method, called C-GLIS, is assessed in three numerical benchmarks.

2 Main assumptions

For a given decision vector xi ∈ Rn, we assume that besides the objective function fi = f(xi)
also a feasibility label Gi = G(xi) ∈ {0, 1} and/or a satisfaction label Si = S(x) ∈ {0, 1} are
provided to the optimization algorithm, where f,G, S are unknown functions that can only
be sampled:

G(x) =

{
0 if x /∈ ΩG

1 if x ∈ ΩG,
(1)

S(x) =

{
0 if x /∈ ΩS

1 if x ∈ ΩS ,
(2)

where ΩG and ΩS are the (unknown) feasibility and satisfaction set, respectively.

3 Learning unknown constraint functions

A surrogate of the probability of constraint feasibility and experiment’s satisfaction is learned
via an Inverse Distance Weighting (IDW) interpolant function [1].

We construct the surrogate Ĝ ofG and Ŝ of S with a feasibility vector GF = [G1 . . . GN ]′ ∈
{0, 1}N and a satisfaction vector SF = [S1 . . . SN ]′ ∈ {0, 1}N , where N is the current number
of samples collected so far.

The surrogate function Ĝ : Rnx → R predicting the probability of satisfying the feasibility
constraint x ∈ ΩG is defined as

Ĝ(x) =

N∑
i=1

νi(x)Gi, (3)
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where νi(x) : Rnx → R for i = 1 . . . , N is defined as

νi(x) =


1 if x = xi
0 if x = xj , j 6= i

wi(x)∑N
i=1 wi(x)

otherwise.
(4)

Here wi : Rnx \ {xi} → R is the following IDW function [3]

wi(x) =
e−d

2(x,xi)

d2(x, xi)
, (5)

where d : Rnx × Rnx → R denotes the squared Euclidean distance

d(x, xi) = ‖x− xi‖22. (6)

The benefit of using IDW interpolation for predicting probabilities is that Ĝ is always
between 0 and 1 by construction (see [1, Lemma 1-P2]). The surrogate function Ŝ : Rnx → R
is defined similarly.

Note that other known constraints Ax ≤ b, g(x) ≤ 0 are instead already handled in GLIS
by including them during the minimization of the acquisition function, described next.

4 Acquisition function

Similar to C-GLISp [2], we account for feasibility and satisfaction terms in the acquisition
function to encourage feasible exploration. The original acquisition function (eqn.[15] in [1]):

a(x) = f̂(x)− αs(x)− δ∆Fz(x), (7)

is modified to

a(x) = f̂(x)− αs(x)− δE∆FzN (x) + δG∆F (1− Ĝ(x)) + δS∆F (1− Ŝ(x)), (8)

where δE ≥ 0 is the exploration parameter, and δG, δS ≥ 0 weight the probability of a sample
x to be infeasible and/or unsatisfactory, respectively. Naturally, one should select δG > δS ,
so that the possible infeasibility is penalized more than a potential unsatisfactory behavior.
For practical implementation, we suggest to adaptively tune δG and δS based on the sampled
standard deviation obtained from leave-one-out cross-validation [4] of Ĝ and Ŝ, respectively
(see more details in [2]).

Also, in (8), zN is the modified IDW exploration term proposed in [2]:

zN (x) =

(
1− N

Nmax

)
tan−1

(∑N
i=1 ri(x

∗
N )∑N

i=1 ri(x)

)
+

N

Nmax
tan−1

(
1∑N

i=1 ri(x)

)
, (9)

where ri(x) = 1
d2(x,xi)

. This formulation is empirically observed to better escape from local
minima.

5 Numerical benchmarks

We test the three numerical benchmarks noted in [2] with the C-GLIS method. Computations
are run on an Intel i7-8550U 1.8-GHz CPU laptop with 8GB of RAM. The Latin hypercube
sampling method [5] (lhsdesign function of the Statistics and Machine Learning Toolbox of
MATLAB [6]) is used in the initial sampling phase of C-GLIS. A Monte-Carlo simulation with
100 runs of C-GLIS is performed to obtain statistically significant results. The optimizers
obtained at the end of each run are depicted in 1, which shows that C-GLIS can find the
constrained optimum with high probability.
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Figure 1: Algorithm C-GLIS. Optimizers computed in 100 runs on benchmark MB, CHC
and CHSC. Red ×: optimizer computed at the end of each run; purple ♦: unconstrained
optimizer; green ♦: global constrained optimizer.
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