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1 Introduction

This report describes how the derivative-free global optimization method GLIS [1] can be
extended by employing the techniques developed in C-GLISp [2] to handle (i) black-box
constraint functions, and (i7) additional information on whether the function value obtained
must be considered satisfactory or not. The efficiency and effectiveness of the proposed
method, called C-GLIS, is assessed in three numerical benchmarks.

2 Main assumptions

For a given decision vector z; € R™, we assume that besides the objective function f; = f(z;)
also a feasibility label G; = G(z;) € {0, 1} and/or a satisfaction label S; = S(x) € {0, 1} are
provided to the optimization algorithm, where f,G,S are unknown functions that can only

be sampled:
[0 ifxdQq
G@){1 if z € O, M)
[0 ifxé¢Qg
S(x)_{ 1 ifz € Qg, @

where Qg and Qg are the (unknown) feasibility and satisfaction set, respectively.

3 Learning unknown constraint functions

A surrogate of the probability of constraint feasibility and experiment’s satisfaction is learned
via an Inverse Distance Weighting (IDW) interpolant function [1].

We construct the surrogate G of G and S of S with a feasibility vector Gp = [G1 ... GN]' €
{0,1}" and a satisfaction vector Sp =[Sy ... Sy]|' € {0,1}", where N is the current number
of samples collected so far.

The surrogate function G:R"™ 5 R predicting the probability of satisfying the feasibility
constraint x € ()¢ is defined as

Glz) = Z vi(x)Gi, (3)
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where v;(z) : R™ — R for i = 1..., N is defined as

1 if x = x;
vi(z) = 0 ifte=ua5j#1 (4)
—wil®  Gtherwise.
2= wi(x)
Here w; : R™ \ {z;} — R is the following IDW function [3]
—d?(z,x;)
e
— )
d2($7 .’L‘z) ’ ( )

where d : R x R"™ — R denotes the squared Euclidean distance

wi(z) =

d(z, ;) = ||z — @3- (6)

The benefit of using IDW interpolation for predicting probabilities is that G is always
between 0 and 1 by construction (see [1, Lemma 1-P2]). The surrogate function S : R™ — R
is defined similarly.

Note that other known constraints Az < b, g(x) < 0 are instead already handled in GLIS
by including them during the minimization of the acquisition function, described next.

4 Acquisition function

Similar to C-GLISp [2], we account for feasibility and satisfaction terms in the acquisition
function to encourage feasible exploration. The original acquisition function (eqn.[15] in [1]):

a(z) = f(z) — as(z) — SAFz(x), (7)

is modified to

a(z) = f(z) — as(x) — SpAFzn(z) + 0gAF(1 — G(z)) + 0sAF(1 — S(z)), (8)
where 6 > 0 is the exploration parameter, and g, ds > 0 weight the probability of a sample
x to be infeasible and/or unsatisfactory, respectively. Naturally, one should select dg > dg,
so that the possible infeasibility is penalized more than a potential unsatisfactory behavior.
For practical implementation, we suggest to adaptively tune é; and dg based on the sampled
standard deviation obtained from leave-one-out cross-validation [4] of G and S, respectively
(see more details in [2]).

Also, in (8), zn is the modified IDW exploration term proposed in [2]:

an(z)=(1-— N an—! Zz]\ilrl('f;V) N -] 1
w(z) (1 Nmm)t (Efvlri(x)>+]\fm(wt (Z,Nm(:v)>’ (9)

where r;(x) = dQ(;

minima.

) This formulation is empirically observed to better escape from local

5 Numerical benchmarks

We test the three numerical benchmarks noted in [2] with the C-GLIS method. Computations
are run on an Intel i7-8550U 1.8-GHz CPU laptop with 8GB of RAM. The Latin hypercube
sampling method [5] (lhsdesign function of the Statistics and Machine Learning Toolbox of
MATLAB [6]) is used in the initial sampling phase of C-GLIS. A Monte-Carlo simulation with
100 runs of C-GLIS is performed to obtain statistically significant results. The optimizers
obtained at the end of each run are depicted in 1, which shows that C-GLIS can find the
constrained optimum with high probability.
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