Learning Critical Scenarios in Feedback Control Systems for Automated Driving

Mengjia Zhu ${ }^{1}$, Alberto Bemporad ${ }^{1}$, Maximilian Kneiss| ${ }^{2}$, Hasan Esen ${ }^{2}$

ITSC 2023

${ }^{1}$ IMT School for Advanced Studies Lucca
${ }^{2}$ Collaboration project with DENSO

September 28, 2023

Overview

- Project goals
- Problem formulation and solution strategy
- Case studies
- Open questions and discussions

Project goals

- Detect undesired simulation scenarios (= corner-cases) for controller validation in safety-critical automated driving (AD) applications to support controller design choices

Project goals

- Detect undesired simulation scenarios (= corner-cases) for controller validation in safety-critical automated driving (AD) applications to support controller design choices
- Reduce verification and validation (V\&V) effort by using scenario-based method with global optimization as the exploration method (sampler)

Terminologies

- A scenario is described by a vector $x_{O D D}$ (operational design domain) $\subseteq \mathbb{R}^{n}$ of parameters.

Definition: An ODD provides the set of conditions under which the AD system is designed to function.

- $x_{\text {scene }} \in x_{\text {ODD }}=$ set of meaningful scenario parameters to consider

Examples: initial distance between the SV and OVs, acceleration of the OV,...

- Critical scenario $=$ vector $x_{\text {scene }}$ for which closed-loop behavior is critical

Examples: time-to-collision is too short, excessive jerk of the SV, ...

Critical-case generation

Key ideas:

- Formulate the critical scenarios identification problem as an optimization problem
- Provide a holistic problem formulation
- Considers an ODD description
- Generate critical scenarios by minimizing an objective function $f_{\text {system }}: \mathbb{R}^{n} \mapsto \mathbb{R}$
- Use global optimizer GLIS to generate critical corner-cases

Problem formulation

Optimization problem:

$$
\begin{align*}
x_{\text {scene }}^{*} \in \underset{x_{\text {scene }}}{\arg \min } & f_{\text {system }}\left(x_{\text {scene }}\right) \\
\text { s.t. } & \ell \leq x_{\text {scene }} \leq u \tag{1}\\
& x_{\text {scene }} \in \chi,
\end{align*}
$$

- $f_{\text {system }}: \mathbb{R}^{n} \mapsto \mathbb{R}$ is the objective function to minimize
- Criticality of closed-loop simulation (or experiment) determined by scenario $x_{\text {scene }}$
- the smaller $f(x)$, the more critical $x_{\text {scene }}$ is
- Known or pre-designed
- $x_{\text {scene }} \in x_{\mathrm{ODD}} \subseteq \mathbb{R}^{n}$ is the vector of parameters to be optimized
- $\ell, u \in \mathbb{R}^{n}$: vectors of lower and upper bounds on $x_{\text {scene }}$
- $\chi \in \mathbb{R}^{n}$: other arbitrary constraints on $x_{\text {scene }}$ (Known)

Case study

- Problem: find critical scenarios in automated driving w/ obstacles
- MPC controller for lane-keeping and obstacle-avoidance based on simple kinematic bicycle model (Zhu, Piga, and Bemporad, 2021)

$$
\begin{aligned}
\dot{x}_{f} & =v \cos (\theta+\psi) \\
\dot{w}_{f} & =v \sin (\theta+\psi) \\
\dot{\theta} & =\frac{v \sin (\psi)}{L} \\
\left(x_{f}, w_{f}\right) & =\text { front-wheel position }
\end{aligned}
$$

Case studies

Logical Scenario 1:

Logical Scenario 2:

Optimization problem

Black-box optimization problem: given k obstacles, solve

$$
\begin{aligned}
\min _{x_{\text {scene }} \in x_{\mathrm{ODD}}} & \sum_{i=1, \ldots, k} d_{x_{f}, \text { critical }}^{\mathrm{SV}, i}\left(x_{\text {scene }}\right)+d_{w_{f}, \text { critical }}^{\mathrm{SV}, i}\left(x_{\text {scene }}\right) \\
\text { s.t. } & \ell \leq x_{\text {scene }} \leq u \& \text { other constraints }
\end{aligned}
$$

$$
\begin{align*}
& \text { where } \quad d_{x_{f}, \text { critical }}^{S V, i}\left(x_{\text {scene }}\right)= \begin{cases}\min _{t \in T_{\text {collision }}} d_{x_{f}}^{S V, i}\left(x_{\text {scene }}, t\right) & \mathcal{I}_{\text {collision }}^{i} \\
L & \sim \mathcal{I}_{\text {collision }}^{i} \& \mathcal{I}_{\text {collision }} \\
\sum_{t \in T_{\text {sim }}} d_{x_{f}}^{S V, i}\left(x_{\text {scene }}, t\right) & \sim \mathcal{I}_{\text {collision }}\end{cases} \\
& d_{w_{f}, \text { critical }}^{\text {SV }, i}\left(x_{\text {scene }}\right)= \begin{cases}\min _{t \in T_{\text {collision }}} d_{w_{f}}^{\text {SV }, i}\left(x_{\text {scene }}, t\right) & \mathcal{I}_{\text {collision }}^{i} \\
w_{f, \text { safe }} & \sim \mathcal{I}_{\text {collision }}^{i} \& \mathcal{I}_{\text {collision }} \\
\sum_{t \in T_{\text {saim }}} d_{w_{f}}^{\text {SV }, i}\left(x_{\text {scene }}, t\right) & \sim \mathcal{I}_{\text {collision }}\end{cases} \tag{2}\\
& \mathcal{I}_{\text {collision }}^{i}=\text { True, if } \exists t \in T_{\text {sim }} \text {, s.t. } \quad\left(d_{x_{f}}^{\text {SV }, i}\left(x_{\text {scene }}, t\right) \leq L\right) \&\left(d_{w_{f}}^{\text {sV,i}}\left(x_{\text {scene }}, t\right) \leq W\right) \text {, } \\
& \mathcal{I}_{\text {collision }}=\text { True, if } \exists h \in\{1, \ldots, k\} \text {, s.t. } \quad \mathcal{I}_{\text {collision }}^{h}=\text { True. }
\end{align*}
$$

Results and discussions

Logical scenario 1 - Test 2: GLIS identifies 64 collision cases within 100 simulations

Iter	$x_{\text {scene }}$						
	$x_{f 1}^{0}$	v_{1}^{0}	$x_{f 2}^{0}$	v_{2}^{0}	$x_{f 3}^{0}$	v_{3}^{0}	
51	15.00	30.00	44.14	10.00	49.10	47.39	
79	28.09	30.00	70.29	10.00	74.79	31.74	
40	34.30	30.00	60.59	10.00	77.80	35.97	

Collision triggering conditions and discussions

- 1) SV change lane to avoid OV_{1}; 2) SV cannot brake fast enough to avoid OV_{2}
- To avoid OV_{2}, lane change is not an option for $\mathrm{SV}\left(\mathrm{OV}_{1}\right.$ blocks the way $)$
- Critical $X_{\text {scene }}$:
- A relatively large $x_{f 1}^{0}$ coupled with a relatively slow v_{1}^{0}
- The smaller $x_{f 1}^{0}$, the greater v_{1}^{0}
- A slow v_{2}^{0} with a large $x_{f 2}^{0}$

Results and discussions

Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

Iter	$x_{\text {scene }}$		
	$x_{f 1}^{0}$	v_{1}^{0}	t_{c}
28	12.57	46.94	16.75
16	17.53	47.48	23.65
88	44.54	41.26	16.02

Collision triggering conditions and discussions

- Critical $x_{\text {scene }}$:
- a combination of a relatively large $x_{f 1}^{0}$ with a relatively small v_{1}^{0} and a $t_{c}<t_{\exp }$
- a larger $x_{f 1}^{0}$ is coupled with either a smaller v_{1}^{0} or a lager t_{c} or both
- 1) SV changes lane to avoid OV_{1};

2) SV collides with OV_{1} after t_{c} (during lane-changing of OV_{1})

- SV do not have enough response time to decelerate for the sudden lane-changing of OV_{1}

Conclusion

- The global opt. framework can effectively determine safety-critical test scenarios
- based on learning a surrogate model of the criticality function
- The collision triggering conditions can be found by analyzing the identifed critical test scenarios
- The information synthesized from the critical cases can then be used to
- refine the ODD definitions AND/OR
- upgrade the design of the system

Challenges with the current approach

The design of the objective function

- It is often based on multiple criteria
- Its formulation can be hard to determine beforehand

Possible solutions: Integrate with RTAMT monitors, see (Molin et al, 2023)

Thank you!

Questions?

Contact info: mengjia.zhu@imtlucca.it

Complementary slides

Summary

Goal: Test the applicability of a designed feedback control system (System Under Test, SUT) in an AD vehicle

- Specifically, we consider a subject vehicle (SV) actuated by the given controller for
- lane keeping \& collision avoidance with obstacle vehicles (OVs)
- Reduce test efforts: use a systematic way to efficiently identify test scenarios

V\&V strategy

- Search-based testing framework
- Exploration method (sampler): learning-based optimization

Notes on the optimization problem

Objective function $f_{\text {system }}$:

- A single assessing criterion OR
- A weighted combination of different criteria
- A closed form expression of $f_{\text {system }}$ with $x_{\text {scene }}$ is often NOT available
- Due to the complex way the level of criticality of the system depends on the variables in $x_{\text {scene }}$
- But $f_{\text {system }}$ can be evaluated through real experiments or simulations

Solution strategy:

- Surrogate-based optimization methods are suitable to solve (1)
- For this project, global optimization algorithm GLIS (Bemporad, 2020) is used
- Benefits: easy incorporation of constraints and cheap computational cost
- Alternatives: Bayesian optimization (Brochu et al, 2010), ...

Case study - MPC controller

- Let us describe the model in general nonlinear multi-input multi-output form

$$
\begin{aligned}
\dot{x} & =f(x, u) \\
y & =g(x, u)
\end{aligned}
$$

- Linear time-varying (LTV) MPC strategy, with constant sampling time T_{s} (Diehl, Bock, Schlöder, 2005; Gros et al, 2020):

$$
\begin{aligned}
\tilde{x}_{j+1} & =A_{j} \tilde{x}_{j}+B_{j} \tilde{u}_{j} \\
\tilde{y}_{j} & =C_{j} \tilde{x}_{j}+D_{j} \tilde{u}_{j}
\end{aligned}
$$

- At each sample t, compute the MPC action $u_{t \mid t}$ by solving a quadratic problem (QP)

$$
\min _{\left\{u_{t+j \mid t}\right\}_{j=0}^{N_{u}-1}, \varepsilon} \sum_{j=0}^{N_{p}-1}\left\|y_{t+j \mid t}-y_{t+j}^{\text {ref }}\right\|_{Q_{y}}^{2}+\sum_{j=0}^{N_{p}-1}\left\|u_{t+j \mid t}-u_{t+j}^{\text {ref }}\right\|_{Q_{u}}^{2}+\sum_{j=0}^{N_{p}-1}\left\|\Delta u_{t+j \mid t}\right\|_{Q_{\Delta u}}^{2}
$$

- Finely-tuned MPC parameters already calibrated and fixed

Case study -MPC controller

Discrete-time state-space model for the case study:

$$
\begin{aligned}
\tilde{s}_{j+1} & =\left[\begin{array}{ccc}
1 & 0 & -\bar{v}_{j} \sin \left(\bar{\theta}_{j}+\bar{\psi}_{j}\right) T_{s} \\
0 & 1 & \bar{v}_{j} \cos \left(\bar{\theta}_{j}+\bar{\psi}_{j}\right) T_{s} \\
0 & 0 & 1
\end{array}\right] \tilde{s}_{j}+\left[\begin{array}{cc}
\cos \left(\bar{\theta}_{j}+\bar{\psi}_{j}\right) T_{s} & -\bar{v}_{j} \sin \left(\bar{\theta}_{j}+\bar{\psi}_{j}\right) T_{s} \\
\sin \left(\bar{\theta}_{j}+\bar{\psi}_{j} T_{s}\right. & \bar{v}_{j} \cos \left(\bar{\theta}_{j}+\bar{\psi}_{j}\right) T_{s} \\
\frac{\sin \left(\bar{\psi}_{j}\right)}{L} T_{s} & \frac{\bar{y}_{j} \cos \left(\bar{\psi}_{j}\right)}{L} T_{s}
\end{array}\right] \tilde{u}_{j} \\
\tilde{y}_{j} & =\tilde{s}_{j},
\end{aligned}
$$

- The subscript ${ }_{j}$ denotes the value at time step j
- Nominal trajectory: $\bar{s}_{j}=\left[\bar{x}_{f_{j}} \bar{w}_{f_{j}} \bar{\theta}_{j}\right]^{\prime}, \bar{u}_{j}=\left[\bar{v}_{j} \bar{\psi}_{j}\right]^{\prime}$, and $\bar{y}_{j}=\bar{s}_{j}$
- $\widetilde{\operatorname{Var}}=\operatorname{Var}-\overline{\operatorname{Var}}$ denotes the deviation from the nominal value

GLIS algorithm

Two stages: Initial sampling \& Active learning

1. Collect $N_{\text {init }}$ initial samples

$$
\left\{\left(x_{\text {scene }}^{1}, f_{\text {system }}^{11}\right),\left(x_{\text {scene }}^{2}, f_{\text {system }}^{2}\right), \ldots,\left(x_{\text {scene }}^{N_{\text {init }}}, f_{\text {system }}^{V_{\text {init }}}\right)\right\}
$$

2. Build a surrogate function

$$
\hat{f}\left(x_{\text {scene }}\right)=\sum_{i=1}^{N} \alpha_{i} \phi\left(\left\|x_{\text {scene }}-x_{\text {scene }}^{i}\right\|_{2}\right)
$$

$\phi=$ radial basis function
Example: $\phi(d)=\frac{1}{1+(\epsilon d)^{2}}$ (inverse quadratic)
true $f\left(x_{\text {scene }}\right)$
surrogate $\hat{f}($ scene $)$

Note: just minimizing $\hat{f}\left(x_{\text {scene }}\right)$ to find $x_{\text {scene }}^{N+1}$ may easily miss the global optimum

GLIS Algorithm: exploration vs. exploitation

3. Construct the IDW exploration function

$$
z\left(x_{\text {scene }}\right)=\frac{2}{\pi} \Delta F \tan ^{-1}\left(\frac{1}{\sum_{i=1}^{N} w_{i}\left(x_{\text {scene }}\right)}\right)
$$

where $w_{i}\left(x_{\text {scene }}\right)=\frac{e^{-\left\|x_{\text {scene }}-x_{\text {scene }}^{i}\right\|^{2}}}{\left\|x_{\text {scene }}-x_{\text {scene }}^{i}\right\|^{2}}$
4. Optimize the acquisition function:

$$
x_{\text {scene } N+1}=\arg \min _{\substack{x_{\text {scene }} \in x_{O D D} \\ \ell \leq x_{\text {scene }} \leq u ;}} \hat{f}\left(x_{\text {scene }}\right)-\delta \boldsymbol{z}\left(x_{\text {scene }}\right)
$$

(Bemporad, 2020)

$$
\text { Exploration function } z\left(x_{\text {scene }}\right)
$$

$\delta=$ exploitation vs. exploration trade-off parameter
to get the query point $x_{\text {scene }}^{N+1}$.
5. Test the case with $x_{\text {scene }}^{N+1}$, measure f^{N+1}.
6. Iterate the procedure for $N+2, N+3 \ldots$

GLIS Algorithm - Summary

GLIS: active sampler to find $x_{\text {scene }}$ that leads to critical behaviors of the closed-loop system

Case studies - Logical Scenario 1

- ODD description
- Optimization problem
- Numerical tests
- Results and discussions

Case study - Logical Scenario 1

ODD description ${ }^{1}$:

- Two or more vehicles on a one-way horizontal road with two or more lanes
- AP:\# of lanes, road width, vehicle dimensions, experiment duration

- The obstacle vehicles (OVs) ($1,2,3, \ldots, k)$: on any lane, ahead or behind subject vehicle, move forward horizontally with a constant speed (NO collision among them)
- AP: \# of OVs, their initial lateral position and constant yaw angle
- Pol: their initial longitudinal position $\left(x_{f i}^{0}\right)$ and initial velocity (v_{i}^{0})
- The subject vehicle (SV): commanded by a MPC controller to avoid collision (when within safety distance with any OV, change lane, decelerate or accelerate depend on the relative position and conditions (discussed in the following slides))
- AP: its initial longitudinal \& lateral position, reference velocity and reference yaw angle; safety distances (longitudinal \& lateral)
- MPC controller: command the SV, the controller under testing
- AP: MPC parameters; Note: constraints are adaptive to Pol

[^0]
Case study - Logical Scenario 1

Dimensions and Exp. duration:

- Road width: 6 m total, 2 lanes ($3 \mathrm{~m} / \mathrm{lane}$)
- Vehicle $\operatorname{dim}(S V \& O V s): L=4.5 \mathrm{~m}, W=1.8 \mathrm{~m}$
- Experiment duration: $t_{\exp }=30 \mathrm{~s}$

Safety distance:

- longitudinal ($x_{f, \text { safe }}$): 10 m , lateral ($w_{f, \text { safe }}$): 3 m

Initial conditions:

- SV: $(0,0) \mathrm{m}, 50 \mathrm{~km} / \mathrm{h}, \theta^{\mathrm{SV}, 0}=0^{\circ}$
- OV: $x_{\text {scene }}=\left[x_{f 1}^{0}, v_{1}^{0}, \ldots x_{f k}^{0}, v_{f k}^{0}\right], k$: \# of obstacles (AP), $\theta_{i}^{0}=0^{\circ}$, for $i=1, \ldots, k$

MPC parameters:

- $T_{s}=0.085 \mathrm{~s}, N_{u}=3, N_{p}=23 ; Q_{y}=\operatorname{diag}(0,10,1), Q_{u}=\operatorname{diag}(1,1), Q_{\Delta u}=\operatorname{diag}(1,0.5)$

Constraints and references (fixed):

- $v^{\text {Sv }} \in[1,90] \mathrm{km} / \mathrm{h}, \dot{v}^{\text {Sv }} \in[-4,4] \mathrm{m} / \mathrm{s}^{2}$, with $v^{\text {Sv }}=50 \mathrm{~km} / \mathrm{h}$
- $\psi^{\text {SV }} \in[-45,45]^{\circ}, \dot{\psi}^{\text {sV }} \in[-60,60]^{\circ} / \mathrm{s}$
- $w_{f}^{\mathrm{SV}} \in[-0.6,3.6] \mathrm{m}, x_{f}^{\mathrm{SV}} \in[-\infty, \infty] \mathrm{m}$

Case study - Logical Scenario 1

Constraints and references (adaptive):
FOR $i=1, \ldots, k$, IF SV and OV_{i} are on the same lane and within safety distances (both longitudinal and lateral) THEN

IF $\left(\mathrm{OV}_{i}\right.$ is ahead of SV) $\& \&$ (no collision between $S V$ and $O V_{i}$ will happen in the next step with the current velocity) $\& \&\left(\mathrm{OV}_{j}, \forall j \neq i, i, j=1, \ldots, k\right.$ are out of safety longitudinal and lateral distances) THEN:

Decision: Change lane;
Update:
$\min w_{f}^{\mathrm{SV}}=w_{f i}+w_{f, \text { safe }} \mathbf{I F}$ change from lower lane to higher lane; $\mathbf{O R}$
$\max w_{f}^{S V}=w_{f i}-w_{f, \text { safe }}$ IF change from higher lane to lower lane;
(Note: 'lower' and 'higher' here refer to the relative lateral position of SV w.r.t OV_{i})

ELSE

Decision: Decelerate or Accelerate;
Update:

$$
\begin{aligned}
& \min x_{f}^{\mathrm{SV}}=x_{f i}+1.1 L \mathbf{I F ~ O V} \\
& \max \\
& \max x_{f}^{\mathrm{SV}}=x_{f i}-1.1 L \mathbf{I F ~ O V}{ }_{i} \text { is ahead of } \mathrm{SV} ; \mathbf{O R}
\end{aligned}
$$

Optimization problem

Discussion:

$$
\begin{array}{lll}
d_{x_{f}, \text { critical }}^{\text {sV }}\left(x_{\text {scene }}\right)=L & \text { IF } & \sim \mathcal{I}_{\text {collision }}^{i} \& \mathcal{I}_{\text {collision }} \\
d_{w_{f}, \text { critical }}^{\text {V,i}}\left(x_{\text {scene }}\right)=w_{f, \text { safe }} & \text { IF } & \sim \mathcal{I}_{\text {collision }}^{i} \& \mathcal{I}_{\text {collision }}
\end{array}
$$

- Constant values are assigned to the critical longitudinal and lateral distances of OV_{i}, when collision happen between SV and OV_{j}, where $j \neq i$

$$
\text { - i.e., } \mathcal{I}_{\text {collision }}=1 \& \& \mathcal{I}_{\text {collision }}^{i}=0
$$

- Reasoning: under this condition, the magnitude of the corresponding distance is irrelevant w.r.t criticality (collision occurence in this case).

Optimization problem

Discussion:

$$
\begin{array}{lll}
d_{x_{f}, \text { critical }}^{\mathrm{SV}, i}\left(x_{\text {scene }}\right)=\sum_{t \in T_{\text {sim }}} d_{x_{f}}^{\mathrm{SV}, i}\left(x_{\text {scene }}, t\right) & \text { IF } & \sim \mathcal{I}_{\text {collision }} \\
d_{w_{f}, \text { critical }}^{\mathrm{SV}, i}\left(x_{\text {scene }}\right)=\sum_{t \in T_{\text {sim }}} d_{w_{f}}^{\mathrm{SV}, i}\left(x_{\text {scene }}, t\right) & \text { IF } & \sim \mathcal{I}_{\text {collision }}
\end{array}
$$

- Sum of its longitudinal and lateral distances at every time step are assigned to the critical longitudinal and lateral distances, when collision DOES NOT happen between ANY SV and $\mathrm{OV}_{i,}$ for $i=1, \ldots, k$
- i.e., $\mathcal{I}_{\text {collision }}=0$
- Reasoning: under this condition, minimizing the distances between SV and each OV_{i} throughout the experiments increases the chance of collision occurrence.

Optimization problem

Discussion:

- Depending on the criticality interested, one can
- blend the critical distances differently
- use an alternative function $f_{\text {system }}$ to guide the search in the optimization process

Numerical tests

Test 1:

- \# of obstacles $(k): 1, w_{f 1}=0[m]$
- $x_{\text {scene }}=\left[x_{f_{1}}^{0}, v_{1}^{0}\right]^{\prime}[\mathrm{m}, \mathrm{km} / \mathrm{h}]$
- $\ell=[5,30]^{\prime}, \quad u=[50,80]^{\prime}$

Test 2:

- \# of obstacles $(k): 3, \quad w_{f}=[0,3,3]$
- $x_{\text {scene }}=\left[x_{f 1}^{0}, v_{1}^{0}, x_{f 2}^{0}, v_{2}^{0}, x_{f 3}^{0}, v_{3}^{0}\right]^{\prime}$
- $\ell=[15,30,0,10,10,30]^{\prime}, \quad u=[50,80,100,80,100,80]^{\prime}$
- $x_{f 3}^{0}-x_{f 2}^{0}>L, \quad v_{3}^{0}>v_{2}^{0}$

Test 3:

- \# of obstacles $(k): 5, \quad w_{f}=[0,0,3,3,3]$
- $x_{\text {scene }}=\left[x_{f 1}^{0}, v_{1}^{0}, x_{f 2}^{0}, v_{2}^{0}, x_{f 3}^{0}, v_{3}^{0}, x_{f 4}^{0}, v_{4}^{0}, x_{f 5}^{0}, v_{5}^{0}\right]^{\prime}$
- $\ell=[15,30,0,10,0,10,10,10,20,10]^{\prime}, u=[50,80,100,80,100,80,100,80,100,80]^{\prime}$
- $x_{f 2}^{0}-x_{f 1}^{0}>L, v_{1}^{0}<v_{2}^{0}, x_{f 4}^{0}-x_{f 3}^{0}>L, v_{4}^{0}>v_{3}^{0}, x_{f 5}^{0}-x_{f 4}^{0}>L, v_{5}^{0}>v_{4}^{0}$

Results and discussions - Test 1

GLIS: $N_{\text {max }}=50, N_{\text {init }}=13$

Iter	$x_{\text {scene }}$	
	$x_{f 1}^{0}$	v_{1}^{0}
18	5	41.72
19	5	36.62
21	5	30.89

- GLIS identifies 4 collision cases within 50 simulation experiments
- 3 sample iter. with $x_{\text {scene }}$ that can lead to collision are shown on the table
- The one highlighted is the 'best'/most critical one identified by the optimizer among these collision cases

Collision illustration:

Results and discussions - Test 1

Iter	$x_{\text {scene }}$	
	$x_{f 1}^{0}$	V_{1}^{0}
18	5	41.72
19	5	36.62
21	5	30.89

Collision triggering condition

- Initial position between the SV and OV_{1} is too close
- The SV is not able to brake fast enough

Discussion

- In general, the results reveal the group of scenarios that would lead to a critical one, based on which we can refine the ODD definition
- Critical ones: Small x_{1}^{0} and slow v_{1}^{0}
- ODD defn refinement: update the lower bounds on x_{1}^{0} or v_{1}^{0} or both

Note: Criticality can also be assessed based on predefined criteria after optimization (e.g., relative velocity at collision)

Results and discussions - Test 2

GLIS: $N_{\max }=100, N_{\text {init }}=25$

Iter	$x_{\text {scene }}$						
	$x_{f 1}^{0}$	v_{1}^{0}	$x_{f 2}^{0}$	v_{2}^{0}	$x_{f 3}^{0}$	v_{3}^{0}	
51	15.00	30.00	44.14	10.00	49.10	47.39	
79	28.09	30.00	70.29	10.00	74.79	31.74	
40	34.30	30.00	60.59	10.00	77.80	35.97	

Note:

- GLIS identifies 64 collision cases within 100 simulation experiments

Video (next slide)

Video

Results and discussions - Test 2

Iter	$X_{\text {scene }}$						
	$x_{f 1}^{0}$	v_{1}^{0}	$x_{f 2}^{0}$	v_{2}^{0}	$x_{f 3}^{0}$	v_{3}^{0}	
51	15.00	30.00	44.14	10.00	49.10	47.39	
79	28.09	30.00	70.29	10.00	74.79	31.74	
40	34.30	30.00	60.59	10.00	77.80	35.97	

Collision triggering conditions and discussions

- 1) SV change lane to avoid OV_{1}; 2) SV cannot brake fast enough to avoid OV_{2}
- To avoid OV_{2}, lane change is not an option for $\mathrm{SV}\left(\mathrm{OV}_{1}\right.$ blocks the way)
- Critical $x_{\text {scene }}$:
- A relatively large $x_{f 1}^{0}$ coupled with a relatively slow v_{1}^{0}
- The smaller $x_{f 1}^{0}$, the greater v_{1}^{0}
- A slow v_{2}^{0} with a large $x_{f 2}^{0}$

Results and discussions - Test 3

GLIS: $N_{\max }=100, N_{\text {init }}=25$

Iter	$x_{\text {scene }}$											
	x_{1}^{0}	v_{1}^{0}	x_{2}^{0}	v_{2}^{0}	x_{3}^{0}	v_{3}^{0}	x_{4}^{0}	v_{4}^{0}	x_{5}^{0}	v_{5}^{0}		
75	15.00	30.00	19.50	30.01	48.54	10.00	60.32	10.00	86.32	51.26		
97	22.89	30.00	57.34	30.00	56.06	10.00	68.76	24.45	73.26	41.54		
76	29.46	30.00	62.40	36.42	42.87	16.84	65.56	31.00	76.14	42.29		

Note:

- GLIS identifies 73 collision cases within 100 simulation experiments

Collision illustration:

Video
(next slide)

Video

Results and discussions - Test 3

Iter	$x_{\text {scene }}$											
	\boldsymbol{x}_{1}^{0}	\boldsymbol{v}_{1}^{0}	x_{2}^{0}	\boldsymbol{v}_{2}^{0}	x_{3}^{0}	\boldsymbol{v}_{3}^{0}	\boldsymbol{x}_{4}^{0}	\boldsymbol{v}_{4}^{0}	\boldsymbol{x}_{5}^{0}	\boldsymbol{v}_{5}^{0}		
75	15.00	30.00	19.50	30.01	48.54	10.00	60.32	10.00	86.32	51.26		
97	22.89	30.00	57.34	30.00	56.06	10.00	68.76	24.45	73.26	41.54		
76	29.46	30.00	62.40	36.42	42.87	16.84	65.56	31.00	76.14	42.29		

Collision triggering conditions and discussions

- 1) SV change lane to avoid OV_{1}; 2) SV cannot brake fast enough to avoid OV_{3}
- To avoid OV_{3}, lane change is not an option for $\mathrm{SV}\left(\mathrm{OV}_{1}\right.$ or OV_{2} or both blocks the way, depending on the initial conditions)
- Critical $x_{\text {scene }}$:
- Similar to the ones identified in Test 2
- A relatively large $x_{f 1}^{0}$ coupled with a relatively slow v_{1}^{0}
- The smaller $x_{f 1}^{0}$, the greater v_{1}^{0}
- A slow v_{3}^{0} with a large $x_{f 3}^{0}$

Logical scenario 1 - Discussion

- Identified critical scenarios:
- SV not able to decelerate fast enough
- OVs block the way for lane change
- The critical scenarios can be eliminated by updating the ODD definition
- In this case, update the bounds of $X_{\text {scene }}$
- (Or update controller designs)
- For this relatively simple setup, adding more obstacle vehicles DOES NOT provide more insight for potential critical scenarios
- The SV only interact with the surrounding OVs
- Obstacle avoidance mechanism of SV is same for every OV
- BUT demonstrate the ability of GLIS to handle relatively high dimension problems

Case studies - Logical Scenario 2

- ODD description
- Numerical tests
- Results and discussions

Case study - Logical Scenario 2

ODD description ${ }^{1}$:

- Two vehicles on a one-way horizontal road with two lanes
- AP: road width, vehicle dimensions, experiment duration

- The OV: initially placed ahead of the SV on Lane 1, moves forward horizontally with a constant speed until time t_{c}, starting from t_{c}, commanded by a MPC controller to change lanes
- AP: its initial lateral position and initial yaw angle, reference velocity and reference yaw angle
- Pol: its initial longitudinal position $\left(x_{f 1}^{0}\right)$ and initial velocity $\left(v_{1}^{0}\right)$, switch time $\left(t_{c}\right)$
- The SV: commanded by a MPC controller to avoid collision (when within safety distance with obstacle vehicles, change lane, decelerate or accelerate depend on the relative position and conditions
- AP: its initial longitudinal \& lateral position, reference velocity and reference yaw angle; safety distance

[^1]
Case study - Logical Scenario 2

ODD description ${ }^{1}$:

- MPC controller - SV: command the subject vehicle for obstacle avoidance, the controller under testing
- AP: MPC parameters
- Note: constraints are adaptive to Pol
- MPC controller - OV: command the obstacle vehicle to change lane
- AP: MPC parameters
- Note: constraints are adaptive to Pol

[^2]
Case study - Logical Scenario 2

Dimensions and Simulation time:

- Road width: 6 m total, $3 \mathrm{~m} /$ lane;
- Vehicle $\operatorname{dim}(S V \& O V): L=4.5 \mathrm{~m}, W=1.8 \mathrm{~m}$
- Experiment duration: $t_{\text {exp }}=30 \mathrm{~s}$

Safety distance:

- longitudinal $\left(x_{f, \text { safe }}\right): 10 \mathrm{~m}$
- lateral $\left(w_{f, \text { safe }}\right): 3 \mathrm{~m}$

Initial conditions:

- $\mathrm{SV}:(0,0) \mathrm{m}, 50 \mathrm{~km} / \mathrm{h}, \theta^{\mathrm{SV}, 0}=0^{\circ}$
- $\mathrm{OV}:\left(x_{f 1}^{0}, 0\right) \mathrm{m}, v_{1}^{0} \mathrm{~km} / \mathrm{h}, \theta_{1}^{0}=0^{\circ}$

Case study - Logical Scenario 2

OV - MPC parameters:

- $T_{s}=0.085 \mathrm{~s}, N_{u}=3, N_{p}=23$,
- $Q_{y}=\operatorname{diag}(0,10,1), Q_{u}=\operatorname{diag}(1,1), Q_{\Delta u}=\operatorname{diag}(1,0.5)$

OV - Constraints and references (fixed):

- $v_{1}=v_{1}^{0} \mathrm{~km} / \mathrm{h}, \dot{v}_{1}=0 \mathrm{~m} / \mathrm{s}^{2}$, with $v_{1, \text { ref }}=v_{1}^{0} \mathrm{~km} / \mathrm{h}$
- $\psi_{1} \in[-45,45]^{\circ}, \dot{\psi}_{1} \in[-60,60]^{\circ} / \mathrm{s}$
- $w_{f 1} \in[-0.6,3.6] m, x_{f 1} \in\left[x_{1}^{0}, \infty\right] m, \theta_{1} \in[-90,90]^{\circ}$

SV: the controller under testing

- The same MPC controller as in Logical Scenario 1

Numerical tests

- $x_{\text {scene }}=\left[x_{f 1}^{0}, v_{1}^{0}, t_{c}\right]^{\prime}[\mathrm{m}, \mathrm{km} / \mathrm{h}, \mathrm{s}]$
- $\ell=[11,30,0]^{\prime}, \quad u=[50,80,40]^{\prime}$

Video

Operational Design Domain (ODD)

ODD: The set of conditions under which a given system is designed to function (ORAD committee, 2021).

Figure 4 from (Zhang et al 2021): Relationships between scenario description at different levels of abstraction.

Scenario

Figure 16 from (Zhang et al 2021): Critical concrete scenario identification process.

Scene: A scene describes a snapshot of the environment (Ulbrich et al, 2015).

Scenario: A scenario describes the temporal development between several scenes in a sequence of scenes (Ullbrich et al, 2015).

Critical scenario/edge or corner case: A relevant scenario for system design, safety analysis, verification or validation that may lead to harm (Zhang et al 2021). ('test cases' within an ODD)

[^0]: ${ }^{1}$ AP: Assumed Parameters; Pol: Parameter of Interest

[^1]: ${ }^{1}$ AP: Assumed Parameters; Pol: Parameter of Interest

[^2]: ${ }^{1}$ AP: Assumed Parameters; Pol: Parameter of Interest

