Learning Critical Scenarios in Feedback Control Systems for Automated Driving

Mengjia Zhu¹, Alberto Bemporad¹, Maximilian Kneissl², Hasan Esen²

ITSC 2023

¹IMT School for Advanced Studies Lucca

²Collaboration project with DENSO

September 28, 2023

- Project goals
- Problem formulation and solution strategy
- Case studies
- Open questions and discussions

 Detect undesired simulation scenarios (= corner-cases) for controller validation in safety-critical automated driving (AD) applications to support controller design choices Detect undesired simulation scenarios (= corner-cases) for controller validation in safety-critical automated driving (AD) applications to support controller design choices

 Reduce verification and validation (V&V) effort by using scenario-based method with global optimization as the exploration method (sampler) • A scenario is described by a vector x_{ODD} (operational design domain) $\subseteq \mathbb{R}^n$ of parameters.

Definition: An ODD provides the set of conditions under which the AD system is designed to **function**.

• $x_{\text{scene}} \in x_{\text{ODD}}$ = set of meaningful scenario parameters to consider

Examples: initial distance between the SV and OVs, acceleration of the OV,...

• **Critical scenario** = vector x_{scene} for which closed-loop behavior is critical

Examples: time-to-collision is too short, excessive jerk of the SV, ...

Key ideas:

- Formulate the critical scenarios identification problem as an optimization problem
 - Provide a holistic problem formulation
 - Considers an ODD description
- Generate critical scenarios by minimizing an objective function $f_{system} : \mathbb{R}^n \mapsto \mathbb{R}$

Problem formulation

Optimization problem:

$$x_{\text{scene}}^* \in \underset{x_{\text{scene}}}{\operatorname{arg\,min}} \quad f_{\text{system}}(x_{\text{scene}})$$

s.t. $\ell \leq x_{\text{scene}} \leq u$
 $x_{\text{scene}} \in \chi,$

- $f_{\text{system}}: \mathbb{R}^n \mapsto \mathbb{R}$ is the objective function to **minimize**
 - Criticality of closed-loop simulation (or experiment) determined by scenario $x_{
 m scene}$
 - the smaller f(x), the more critical x_{scene} is
 - Known or pre-designed
- $x_{\text{scene}} \in x_{\text{ODD}} \subseteq \mathbb{R}^n$ is the vector of parameters to be **optimized**
- $\ell, u \in \mathbb{R}^n$: vectors of lower and upper bounds on x_{scene}
- $\chi \in \mathbb{R}^n$: other arbitrary constraints on x_{scene} (Known)

(1)

- Problem: find critical scenarios in automated driving w/ obstacles
- MPC controller for lane-keeping and obstacle-avoidance based on simple kinematic bicycle model (Zhu, Piga, and Bemporad, 2021)

$$\begin{aligned} \dot{x}_{f} = v \cos(\theta + \psi) \\ \dot{w}_{f} = v \sin(\theta + \psi) \\ \dot{\theta} = \frac{v \sin(\psi)}{L} \\ (x_{f}, w_{f}) = \text{front-wheel position} \end{aligned}$$

Case studies

Logical Scenario 1:

Logical Scenario 2:

Black-box optimization problem: given k obstacles, solve

$$\begin{split} \min_{x_{\text{scene}} \in x_{\text{ODD}}} \quad & \sum_{i=1,\dots,k} d_{x_f,\text{critical}}^{\text{SV},i}(x_{\text{scene}}) + d_{w_f,\text{critical}}^{\text{SV},i}(x_{\text{scene}}) \\ \text{s.t.} \quad & \ell \leq x_{\text{scene}} \leq u \; \& \; \text{other constraints} \end{split}$$

(2)

where
$$d_{x_{f}, \text{critical}}^{\text{SV}, i}(x_{\text{scene}}) = \begin{cases} \min_{t \in \mathcal{T}_{\text{collision}}} d_{x_{f}}^{\text{SV}, i}(x_{\text{scene}}, t) & \mathcal{I}_{\text{collision}}^{i} & \min \text{ time of collision with } \#i \\ \mathcal{L} & \sim \mathcal{I}_{\text{collision}}^{i} \& \mathcal{I}_{\text{collision}} & \text{collision with other } \#j \neq \#i \\ \sum_{t \in \mathcal{T}_{\text{sim}}} d_{x_{f}}^{\text{SV}, i}(x_{\text{scene}}, t) & \sim \mathcal{I}_{\text{collision}} & \text{no collision} \\ \end{cases}$$

$$d_{w_{f}, \text{critical}}^{\text{SV}, i}(x_{\text{scene}}) = \begin{cases} \min_{t \in \mathcal{T}_{\text{collision}}} d_{w_{f}}^{\text{SV}, i}(x_{\text{scene}}, t) & \sim \mathcal{I}_{\text{collision}} \\ w_{f, \text{safe}} & \sim \mathcal{I}_{\text{collision}}^{i} \& \mathcal{I}_{\text{collision}} \\ \sum_{t \in \mathcal{T}_{\text{sim}}} d_{w_{f}}^{\text{SV}, i}(x_{\text{scene}}, t) & \sim \mathcal{I}_{\text{collision}} \\ \mathcal{I}_{\text{collision}}^{i} & \approx \mathcal{I}_{\text{collision}} \\ \end{cases}$$

$$\mathcal{I}_{\text{collision}}^{i} = \text{True, if } \exists t \in \mathcal{T}_{\text{sim}}, \text{ s.t. } (d_{x_{f}}^{\text{SV}, i}(x_{\text{scene}}, t) \leq L) \& (d_{w_{f}}^{\text{SV}, i}(x_{\text{scene}}, t) \leq W), \\ \mathcal{I}_{\text{collision}} = \text{True, if } \exists h \in \{1, \dots, k\}, \text{ s.t. } \mathcal{I}_{\text{collision}}^{h} = \text{True.} \end{cases}$$

Results and discussions

Logical scenario 1 - Test 2: GLIS identifies 64 collision cases within 100 simulations

lter	$X_{ m scene}$									
	x_{f1}^{0}	V_1^0	x_{f2}^{0}	V_2^0	x_{f3}^{0}	V_{3}^{0}				
51	15.00	30.00	44.14	10.00	49.10	47.39				
79	28.09	30.00	70.29	10.00	74.79	31.74				
40	34.30	30.00	60.59	10.00	77.80	35.97				

Collision triggering conditions and discussions

- 1) SV change lane to avoid OV₁; 2) SV cannot brake fast enough to avoid OV₂
- To avoid OV₂, lane change is not an option for SV (OV₁ blocks the way)
- **Critical** *x*_{scene}:
 - A relatively large x_{f1}^0 coupled with a relatively slow v_1^0
 - \circ The smaller x_{f1}^0 , the greater v_1^0
 - A slow v_2^0 with a large x_{f2}^0

Results and discussions

Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

ltor	$\chi_{ m scene}$						
itei	x_{f1}^{0}	v_1^0	t_c				
28	12.57	46.94	16.75				
16	17.53	47.48	23.65				
88	44.54	41.26	16.02				

Collision triggering conditions and discussions

- Critical x_{scene}:
 - a combination of a relatively large x_{f1}^0 with a relatively small v_1^0 and a $t_c < t_{\mathsf{exp}}$
 - a larger $x_{f_1}^0$ is coupled with either a smaller v_1^0 or a lager t_c or both
- 1) SV changes lane to avoid OV₁;
 2) SV collides with OV₁ after t_c (during lane-changing of OV₁)
- SV do not have enough response time to decelerate for the sudden lane-changing of OV_1

- The global opt. framework can effectively determine safety-critical test scenarios
 - based on learning a surrogate model of the criticality function
- The collision triggering conditions can be found by analyzing the identifed critical test scenarios
- The information synthesized from the critical cases can then be used to
 - refine the ODD definitions **AND/OR**
 - upgrade the design of the system

Challenges with the current approach

The design of the objective function

- It is often based on multiple criteria
- Its formulation can be hard to determine beforehand

Possible solutions: Integrate with RTAMT monitors, see (Molin et al, 2023)

Thank you!

Questions?

Contact info: mengjia.zhu@imtlucca.it

Complementary slides

Summary

Goal: Test the applicability of a designed feedback control system (System Under Test, SUT) in an AD vehicle

- Specifically, we consider a subject vehicle (SV) actuated by the given controller for
 - lane keeping & collision avoidance with obstacle vehicles (OVs)
- Reduce test efforts: use a systematic way to efficiently identify test scenarios

V&V strategy

- Search-based testing framework
- Exploration method (sampler): learning-based optimization

Notes on the optimization problem

Objective function f_{system} :

- A single assessing criterion **OR**
- A weighted combination of different criteria
- A closed form expression of $f_{\rm system}$ with $x_{\rm scene}$ is often **NOT** available
 - Due to the complex way the level of criticality of the system depends on the variables in $x_{
 m scene}$
 - But f_{system} can be **evaluated** through real experiments or simulations

Solution strategy:

- Surrogate-based optimization methods are suitable to solve (1)
- For this project, global optimization algorithm GLIS (Bemporad, 2020) is used
 - Benefits: easy incorporation of constraints and cheap computational cost
 - Alternatives: Bayesian optimization (Brochu et al, 2010), ...

Case study - MPC controller

· Let us describe the model in general nonlinear multi-input multi-output form

 $\dot{x} = f(x, u)$ y = g(x, u),

• Linear time-varying (LTV) MPC strategy, with constant sampling time T_s (Diehl, Bock, Schlöder, 2005; Gros et al, 2020):

$$\begin{split} \tilde{x}_{j+1} &= \mathcal{A}_j \tilde{x}_j + \mathcal{B}_j \tilde{u}_j \ \tilde{y}_j &= \mathcal{C}_j \tilde{x}_j + \mathcal{D}_j \tilde{u}_j, \end{split}$$

• At each sample t, compute the MPC action $u_{t|t}$ by solving a **quadratic problem (QP)**

$$\min_{\substack{\{u_{t+j|t}\}_{j=0}^{N_{\mu}-1}, \varepsilon \\ j=0}} \sum_{j=0}^{N_{p}-1} \left\| y_{t+j|t} - y_{t+j}^{\text{ref}} \right\|_{Q_{y}}^{2} + \sum_{j=0}^{N_{p}-1} \left\| u_{t+j|t} - u_{t+j}^{\text{ref}} \right\|_{Q_{u}}^{2} + \sum_{j=0}^{N_{p}-1} \left\| \Delta u_{t+j|t} \right\|_{Q_{\Delta u}}^{2}$$

• Finely-tuned MPC parameters already calibrated and fixed

Case study -MPC controller

Discrete-time state-space model for the case study:

$$\begin{split} \tilde{\mathbf{S}}_{j+1} &= \begin{bmatrix} 1 & 0 & -\bar{\mathbf{v}}_j \sin(\bar{\theta}_j + \bar{\psi}_j) \mathbf{T}_s \\ 0 & 1 & \bar{\mathbf{v}}_j \cos(\bar{\theta}_j + \bar{\psi}_j) \mathbf{T}_s \end{bmatrix} \tilde{\mathbf{S}}_j + \begin{bmatrix} \cos(\bar{\theta}_j + \bar{\psi}_j) \mathbf{T}_s & -\bar{\mathbf{v}}_j \sin(\bar{\theta}_j + \bar{\psi}_j) \mathbf{T}_s \\ \sin(\bar{\theta}_j + \bar{\psi}_j) \mathbf{T}_s & \bar{\mathbf{v}}_j \cos(\bar{\theta}_j + \bar{\psi}_j) \mathbf{T}_s \\ \frac{\sin(\bar{\psi}_j)}{L} \mathbf{T}_s & \frac{\bar{\mathbf{v}}_j \cos(\bar{\psi}_j)}{L} \mathbf{T}_s \end{bmatrix} \tilde{\mathbf{U}}_j \\ \tilde{\mathbf{y}}_j &= \tilde{\mathbf{S}}_j, \end{split}$$

- The subscript *j* denotes the value at time step *j*
- Nominal trajectory: $\bar{s}_j = [\bar{x}_{f_j} \ \bar{w}_{f_j} \ \bar{\theta}_j]', \ \bar{u}_j = [\bar{v}_j \ \bar{\psi}_j]'$, and $\bar{y}_j = \bar{s}_j$
- $\widetilde{Var} = Var \overline{Var}$ denotes the deviation from the nominal value

GLIS algorithm

Two stages: Initial sampling & Active learning

(Bemporad, 2020)

1. Collect N_{init} initial samples $\{(x_{scene}^1, f_{system}^1), (x_{scene}^2, f_{system}^2), \dots, (x_{scene}^{N_{init}}, f_{system}^{N_{init}})\}$

2. Build a surrogate function

$$\hat{f}(\mathbf{x}_{\text{scene}}) = \sum_{i=1}^{N} \alpha_i \phi(\left\|\mathbf{x}_{\text{scene}} - \mathbf{x}_{\text{scene}}^i\right\|_2)$$

 ϕ = radial basis function Example: $\phi(d) = \frac{1}{1+(\epsilon d)^2}$

(inverse quadratic)

Note: just minimizing $\hat{f}(x_{\text{scene}})$ to find x_{scene}^{N+1} may easily miss the global optimum

GLIS Algorithm: exploration vs. exploitation

3. Construct the IDW exploration function

$$z(\mathbf{x}_{\text{scene}}) = \frac{2}{\pi} \Delta F \tan^{-1} \left(\frac{1}{\sum_{i=1}^{N} w_i(\mathbf{x}_{\text{scene}})} \right)$$

where
$$w_i(x_{\text{scene}}) = rac{e^{-\left\|x_{\text{scene}} - x_{\text{scene}}^i\right\|^2}}{\left\|x_{\text{scene}} - x_{\text{scene}}^i\right\|^2}$$

4. Optimize the **acquisition function**:

$$X_{ ext{scene}N+1} = rgmin_{\substack{x_{ ext{scene}} \in x_{ODD} \\ \ell \leq x_{ ext{scene}} \in \chi}} \hat{f}(x_{ ext{scene}}) - \delta z(x_{ ext{scene}})$$

to get the **query point** x_{scene}^{N+1} .

5. Test the case with x_{scene}^{N+1} , measure f^{N+1} .

6. Iterate the procedure for
$$N + 2, N + 3...$$

M. Zhu - ITSC 2023, Bilbao, Spain

 δ = **exploitation vs. exploration** trade-off parameter

f^{N+1}.

GLIS Algorithm - Summary

GLIS: active sampler to find x_{scene} that leads to critical behaviors of the closed-loop system

- ODD description
- Optimization problem
- Numerical tests
- Results and discussions

ODD description¹:

- Two or more vehicles on a one-way horizontal road with two or more lanes
 - **AP**:# of lanes, road width, vehicle dimensions, experiment duration

- The obstacle vehicles (OVs) (1, 2, 3,...,k): on any lane, ahead or behind subject vehicle, move forward horizontally with a constant speed (**NO** collision among them)
 - AP: # of OVs, their initial lateral position and constant yaw angle
 - **Pol**: their initial longitudinal position $(x_{f_i}^0)$ and initial velocity (v_i^0)
- The subject vehicle (SV): commanded by a MPC controller to avoid collision (when within safety distance with any OV, change lane, decelerate or accelerate depend on the relative position and conditions (discussed in the following slides))
 - **AP**: its initial longitudinal & lateral position, reference velocity and reference yaw angle; safety distances (longitudinal & lateral)
- MPC controller: command the SV, the controller under testing
 - AP: MPC parameters; Note: constraints are adaptive to Pol

¹AP: Assumed Parameters; Pol: Parameter of Interest

Dimensions and Exp. duration:

- Road width: 6 m total, 2 lanes (3 m/lane)
- Vehicle dim (SV & OVs): L = 4.5 m, W = 1.8 m
- Experiment duration: $t_{exp} = 30$ s

Safety distance:

- longitudinal (x_{f,safe}): 10 m, lateral (w_{f,safe}): 3 m
 Initial conditions:
 - SV: (0, 0) m, 50 km/h, $\theta^{SV,0} = 0^{\circ}$
 - OV: $x_{\text{scene}} = [x_{f1}^0, v_1^0, ... x_{fk}^0, v_{fk}^0]$, k: # of obstacles (AP), $\theta_i^0 = 0^\circ$, for i = 1, ..., k

MPC parameters:

• $T_s = 0.085$ s, $N_u = 3$, $N_p = 23$; $Q_y = \text{diag}(0, 10, 1)$, $Q_u = \text{diag}(1, 1)$, $Q_{\Delta u} = \text{diag}(1, 0.5)$

Constraints and references (fixed):

- + $v^{SV} \in$ [1, 90] km/h, $\dot{v}^{SV} \in$ [-4, 4] m/s², with v^{SV} = 50 km/h
- $\psi^{\text{SV}} \in [-45, 45]^{\circ}$, $\dot{\psi}^{\text{SV}} \in [-60, 60]^{\circ}$ /s
- $w_f^{SV} \in$ [-0.6, 3.6] m, $x_f^{SV} \in$ [- ∞ , ∞] m

Constraints and references (adaptive):

FOR i = 1, ..., k, **IF** SV and OV_i are on the same lane and within safety distances (both longitudinal and lateral) **THEN**

IF (OV_{*i*} is ahead of SV) && (no collision between SV and OV_{*i*} will happen in the next step with the current velocity) && (OV_{*j*}, $\forall j \neq i, i, j = 1, ..., k$ are out of safety longitudinal and lateral distances) **THEN**:

Decision: Change lane; **Update**:

 $\begin{array}{l} \min w_{f}^{\text{SV}} = w_{fi} + w_{f,\text{safe}} \ \textbf{IF} \ \text{change from lower lane to higher lane;} \ \textbf{OR} \\ \max w_{f}^{\text{SV}} = w_{fi} - w_{f,\text{safe}} \ \textbf{IF} \ \text{change from higher lane to lower lane;} \\ (\text{Note: 'lower' and 'higher' here refer to the relative lateral position of SV w.r.t } OV_{i}) \end{array}$

ELSE

Decision: Decelerate or Accelerate; **Update**:

min $x_f^{SV} = x_{fi} + 1.1L$ IF OV_i is behind of SV; OR max $x_f^{SV} = x_{fi} - 1.1L$ IF OV_i is ahead of SV;

Discussion:

• **Constant** values are assigned to the critical longitudinal and lateral distances of OV_i , when collision happen between SV and OV_j , where $j \neq i$

- *i.e.*,
$$\mathcal{I}_{\mathsf{collision}} = 1$$
 && $\mathcal{I}^i_{\mathsf{collision}} = 0$

• **Reasoning:** under this condition, the magnitude of the corresponding distance is **irrelevant** w.r.t **criticality** (collision occurence in this case).

Discussion:

• **Sum** of its longitudinal and lateral distances at every time step are assigned to the critical longitudinal and lateral distances, when collision **DOES NOT** happen between **ANY** SV and OV_{*i*}, for *i* = 1,...,*k*

- *i.e.*, $\mathcal{I}_{\text{collision}} = 0$

• **Reasoning:** under this condition, minimizing the distances between SV and each OV_i throughout the experiments **increases** the chance of collision occurrence.

Discussion:

- Depending on the criticality interested, one can
 - blend the critical distances differently
 - use an alternative function *f*_{system} to guide the search in the optimization process

Numerical tests

Test 1:

- # of obstacles (k): 1, $w_{f1} = 0$ [m]
- $x_{scene} = [x_{f1}^0, v_1^0]'$ [m, km/h]
- $\ell = [5, 30]', \quad u = [50, 80]'$

Test 2:

- # of obstacles (k): 3, $w_f = [0, 3, 3]$
- $x_{scene} = [x_{f1}^0, v_1^0, x_{f2}^0, v_2^0, x_{f3}^0, v_3^0]'$
- $\ell = [15, 30, 0, 10, 10, 30]', \quad u = [50, 80, 100, 80, 100, 80]'$
- $x_{f3}^0 x_{f2}^0 > L$, $v_3^0 > v_2^0$

Test 3:

- # of obstacles (k): 5, $w_f = [0, 0, 3, 3, 3]$
- $x_{scene} = [x_{f1}^0, v_1^0, x_{f2}^0, v_2^0, x_{f3}^0, v_3^0, x_{f4}^0, v_4^0, x_{f5}^0, v_5^0]'$
- $\ell = [15, 30, 0, 10, 0, 10, 10, 10, 20, 10]'$, u = [50, 80, 100, 80, 100, 80, 100, 80, 100, 80]'
- $x_{f2}^0 x_{f1}^0 > L$, $v_1^0 < v_2^0$, $x_{f4}^0 x_{f3}^0 > L$, $v_4^0 > v_3^0$, $x_{f5}^0 x_{f4}^0 > L$, $v_5^0 > v_4^0$

GLIS: $N_{\text{max}} = 50$, $N_{\text{init}} = 13$

ltor	$X_{ m scene}$				
itter	x_{f1}^{0}	v_1^0			
18	5	41.72			
19	5	36.62			
21	5	30.89			

- GLIS identifies 4 collision cases within 50 simulation experiments
- 3 sample iter. with x_{scene} that can lead to **collision** are shown on the table
- The one highlighted is the 'best'/most critical one identified by the optimizer among these collision cases

Collision illustration:

Collision triggering condition

- Initial position between the SV and OV₁ is too close
- The SV is not able to brake fast enough

Discussion

- In general, the results reveal the group of scenarios that would lead to a critical one, based on which we can refine the ODD definition
 - **Critical ones**: Small x_1^0 and slow v_1^0
 - **ODD defn refinement**: update the lower bounds on x_1^0 or v_1^0 or both

<u>Note</u>: Criticality can also be assessed based on predefined criteria after optimization (e.g., relative velocity at collision)

GLIS: $N_{\rm max} = 100$, $N_{\rm init} = 25$

lter	X _{scene}								
	x_{f1}^0	v_1^0	x_{f2}^{0}	V_2^0	x_{f3}^{0}	V_3^0			
51	15.00	30.00	44.14	10.00	49.10	47.39			
79	28.09	30.00	70.29	10.00	74.79	31.74			
40	34.30	30.00	60.59	10.00	77.80	35.97			

Note:

• GLIS identifies 64 collision cases within 100 simulation experiments

Video (next slide)

Video

Collision triggering conditions and discussions

- 1) SV change lane to avoid OV₁; 2) SV cannot brake fast enough to avoid OV₂
- To avoid OV₂, lane change is not an option for SV (OV₁ blocks the way)
- **Critical** *x*_{scene}:
 - A relatively large x_{f1}^0 coupled with a relatively slow v_1^0
 - \circ The smaller x_{f1}^0 , the greater v_1^0
 - A slow v_2^0 with a large x_{f2}^0

GLIS: $N_{\rm max} = 100$, $N_{\rm init} = 25$

ltor		X _{scene}									
itei	x_{1}^{0}	v_1^0	x_{2}^{0}	V_{2}^{0}	x_{3}^{0}	V_{3}^{0}	x_4^0	V_4^0	x_{5}^{0}	V_{5}^{0}	
75	15.00	30.00	19.50	30.01	48.54	10.00	60.32	10.00	86.32	51.26	
97	22.89	30.00	57.34	30.00	56.06	10.00	68.76	24.45	73.26	41.54	
76	29.46	30.00	62.40	36.42	42.87	16.84	65.56	31.00	76.14	42.29	

Note:

• GLIS identifies 73 collision cases within 100 simulation experiments

Collision illustration:

Video (next slide)

Video

ltor		X _{scene}								
itei	x_{1}^{0}	v_{1}^{0}	x_{2}^{0}	V_{2}^{0}	x_{3}^{0}	V_{3}^{0}	x_4^0	v_{4}^{0}	x_{5}^{0}	v_{5}^{0}
75	15.00	30.00	19.50	30.01	48.54	10.00	60.32	10.00	86.32	51.26
97	22.89	30.00	57.34	30.00	56.06	10.00	68.76	24.45	73.26	41.54
76	29.46	30.00	62.40	36.42	42.87	16.84	65.56	31.00	76.14	42.29

Collision triggering conditions and discussions

- 1) SV change lane to avoid OV₁; 2) SV cannot brake fast enough to avoid OV₃
- To avoid OV₃, lane change is not an option for SV (OV₁ or OV₂ or both blocks the way, depending on the initial conditions)
- Critical x_{scene}:
 - Similar to the ones identified in Test 2
 - A relatively large x_{f1}^0 coupled with a relatively slow v_1^0
 - The smaller x_{f1}^0 , the greater v_1^0
 - A slow v_3^0 with a large x_{f3}^0

Logical scenario 1 - Discussion

- Identified critical scenarios:
 - SV not able to decelerate fast enough
 - OVs block the way for lane change
- The critical scenarios can be eliminated by updating the ODD definition
 - In this case, update the bounds of X_{scene}
 - (Or update controller designs)
- For this relatively simple setup, adding more obstacle vehicles **DOES NOT** provide more insight for potential critical scenarios
 - The SV only interact with the surrounding OVs
 - Obstacle avoidance mechanism of SV is same for every OV
 - **BUT** demonstrate the ability of GLIS to handle relatively high dimension problems

- ODD description
- Numerical tests
- Results and discussions

ODD description¹:

- Two vehicles on a one-way horizontal road with two lanes
 - **AP**: road width, vehicle dimensions, experiment duration

- <u>The OV</u>: initially placed ahead of the SV on Lane 1, moves forward horizontally with a constant speed until time *t_c*, starting from *t_c*, **commanded by a MPC controller** to change lanes
 - AP: its initial lateral position and initial yaw angle, reference velocity and reference yaw angle
 - **Pol**: its initial longitudinal position $(x_{f_1}^0)$ and initial velocity (v_1^0) , switch time (t_c)
- <u>The SV</u>: commanded by a MPC controller to avoid collision (when within safety distance with obstacle vehicles, change lane, decelerate or accelerate depend on the relative position and conditions
 - **AP**: its initial longitudinal & lateral position, reference velocity and reference yaw angle; safety distance

¹AP: Assumed Parameters; Pol: Parameter of Interest

ODD description¹:

- MPC controller SV: command the subject vehicle for obstacle avoidance, the controller under testing
 - AP: MPC parameters
 - Note: constraints are adaptive to Pol

- MPC controller OV: command the obstacle vehicle to change lane
 - AP: MPC parameters
 - Note: constraints are adaptive to Pol

¹AP: Assumed Parameters; Pol: Parameter of Interest

Dimensions and Simulation time:

- Road width: 6 m total, 3 m/lane;
- Vehicle dim (SV & OV): L = 4.5 m, W = 1.8 m
- Experiment duration: $t_{exp} = 30$ s

Safety distance:

- longitudinal (x_{f,safe}): 10 m
- lateral (w_{f,safe}): 3 m

Initial conditions:

- SV: (0, 0) m, 50 km/h, $\theta^{SV,0} = 0^{\circ}$
- OV: (x_{f1}^0 , 0) m, v_1^0 km/h, $\theta_1^0 = 0^\circ$

OV - MPC parameters:

- $T_s = 0.085 \text{ s}, N_u = 3, N_p = 23,$
- $Q_y = \text{diag}(0, 10, 1), Q_u = \text{diag}(1, 1), Q_{\Delta u} = \text{diag}(1, 0.5)$

OV - Constraints and references (fixed):

- $v_1 = v_1^0$ km/h, $\dot{v}_1 = 0$ m/s², with $v_{1,\text{ref}} = v_1^0$ km/h
- $\psi_1 \in [-45, 45]^\circ$, $\dot{\psi}_1 \in$ [-60, 60]°/s
- $w_{f1} \in$ [-0.6, 3.6] m, $x_{f1} \in$ [x_1^0 , ∞] m, $\theta_1 \in$ [-90, 90] $^{\circ}$

SV: the controller under testing

• The same MPC controller as in Logical Scenario 1

- $x_{scene} = [x_{f1}^0, v_1^0, t_c]'$ [m, km/h, s]
- $\ell = [11, 30, 0]', \quad u = [50, 80, 40]'$

Video

Operational Design Domain (ODD)

ODD: The set of <u>conditions</u> under which a given system is designed to <u>function</u> (ORAD committee, 2021).

Figure 4 from (Zhang et al 2021): Relationships between scenario description at different levels of abstraction.

Scenario

Figure 16 from (Zhang et al 2021): Critical concrete scenario identification process.

Scene: A scene describes a snapshot of the environment (Ulbrich et al, 2015).

Scenario: A scenario describes the temporal development between several scenes in a **sequence** of scenes (Ulbrich et al, 2015).

Critical scenario/edge or corner case: A relevant scenario for system design, safety analysis, verification or validation that may lead to harm (Zhang et al 2021). ('test cases' within an ODD)