IMPERIAL

SCUOLA **AUCI ALTI STUDI LUCCA** Sargent Centre **MANCHESTER** for Process Systems **Engineering**

• Addressed the experimental planning problems with discrete and

mixed variables, subject to linear equality/inequality constraints

• Demonstrated the effectiveness of mixed-integer surrogates and acquisition function (PWAS)

Future Work:

- Extend the framework to handle nonlinear constraints
- Integrate exploration strategies in PWAS to BO methods
- Implement and integrate with automated/autonomous lab

1. Reaction condition optimization (Suzuki-Miyaura cross-coupling)

2. Solvent design

e se o

HERE: 1999

Mengjia Zhu, Austin Mroz, Lingfeng Gui, Kim Jelfs, Alberto Bemporad, Ehecatl Antonio del Río Chanona***, and Ye Seol Lee***

Corresponding Authors: [lauren.lee@ucl.ac.uk,](mailto:lauren.lee@ucl.ac.uk) a.del-rio-chanona@imperial.ac.uk

Discrete and mixed-variable experimental design with surrogate-based approach

RESULTS HIGHLIGHTS

with Solvent 1

with Solvent 2

MOTIVATIONS OBJECTIVES

Experimental planning in chemistry often involves discrete and

1. Propose alternative surrogate and acquisition models for realistic

- **KINETIC MODEL BASED SOFT-SENSOR KINETIC MODEL BASED SOFT-SENSOR** 2. Integrate mixed-integer optimization for feasible sampling
	- 3. Benchmark against state-of-the-art algorithms to demonstrate

design space representation while preserving exploration

effectiveness

mixed variables, with known discrete/mixed-variable constraints

2. These problems can be challenging for conventional Bayesian

Optimization (BO) approaches to find feasible samples while

maintaining exploration capability

The University of Manchester

PIECEWISE AFFINE SURROGATE MODEL

GENERAL STEPS OF EXPERIMENTAL DESIGN

- The dielectric constant (ϵ) is found to be the predominant factor influencing reaction kinetics • Align with the established
- results: favour polar aprotic solvents
- PWAS can identify feasible solvents with satisfactory performance
- PWAS can learn correlations between solvent properties and reaction rates and offer valuable

- data with a **small** number of required experiments
- **Goal**: develop effective experimental planning strategies

GENERAL METHODOLOGY

PROBLEM DESCRIPTION

CASE STUDIES

CONCLUSIONS AND FUTURE WORK

Why piecewise affine (PWA) function as surrogate model:

• Allow discontinuities (categorical variables)

• Have direct MILP reformulation (solved by efficient MILP solvers)

Exploration models: max-box & hamming distance (MILP reformulation) **Acquisition function**: PWA (exploitation) + Exploration function **Initial Sampling Phase:**

- Box constraints only: Latin Hypercube Sampling (LHS)
- Linear constraints with integer and/or categorical variables:
	- Try LHS first and discard any infeasible samples; if not sufficient,
- Then, solve a MILP problem to sequentially generate samples **Active Learning Phase:**
- Adaptively update/refit the surrogate function (PARC)
- Incorporated distance-based exploration function
- Solve a MILP problem to sequentially generate samples

1. Reaction condition optimization (Suzuki-Miyaura cross-coupling)

Compare PWAS with genetic algorithm and three BO variants

115 (linear) $/$ 5 (linear)

(categorical) and 7 (binary)

46 (integer)

Number of functional group types Number of auxiliary variables introduced for chemical feasibility Number of inequality/equality design constraints

Reaction coordinate

