IMPERIAL

Discrete and mixed-variable experimental design with surrogate-based approach

Mengjia Zhu, Austin Mroz, Lingfeng Gui, Kim Jelfs, Alberto Bemporad, **Ehecatl Antonio del Río Chanona*, and Ye Seol Lee***

Corresponding Authors: <u>lauren.lee@ucl.ac.uk</u>, <u>a.del-rio-chanona@imperial.ac.uk</u>

MOTIVATIONS

Experimental planning in chemistry often involves discrete and

mixed variables, with known discrete/mixed-variable constraints

These problems can be challenging for conventional Bayesian 2.

Optimization (BO) approaches to find feasible samples while

maintaining exploration capability

GENERAL METHODOLOGY

GENERAL STEPS OF EXPERIMENTAL DESIGN

OBJECTIVES

1. Propose alternative surrogate and acquisition models for realistic

design space representation while preserving exploration

- 2. Integrate mixed-integer optimization for feasible sampling
- 3. Benchmark against state-of-the-art algorithms to demonstrate

effectiveness

CASE STUDIES

PROBLEM DESCRIPTION

- it is important to plan experiments efficiently to gather pertinent data with a **small** number of required experiments
- **Goal**: develop effective experimental planning strategies

PIECEWISE AFFINE SURROGATE MODEL

1. Reaction condition optimization (Suzuki-Miyaura cross-coupling)

2. Solvent design (Menschutkin reaction)

Optimization variables	# options
Aryl halide (X)	4
Boronic acid derivative (Y)	3
Base	7
Ligand	11
Solvent	4
Total # of possible combinations	3,696
 Fully categorical; Max. yield Mixed integer and categorical With linear constraints Max. reaction kinetics 	
Compare PWAS with	genetic

Reaction coordinate

Number of functional group types Number of auxiliary variables introduced for chemical feasibility Number of inequality/equality design constraints

46 (integer) (categorical) and 7 (binary) 115 (linear) / 5 (linear)

algorithm and three BO variants

Why piecewise affine (PWA) function as surrogate model:

Allow discontinuities (categorical variables)

RESULTS HIGHLIGHTS

with Solvent 1

with Solvent 2

Reaction condition optimization (Suzuki-Miyaura cross-coupling)

2. Solvent design

energy

- The dielectric constant (ϵ) is found be the predominant factor to influencing reaction kinetics Align with the established results: favour polar aprotic
- PWAS can identify feasible solvents
- PWAS learn correlations can between solvent properties and reaction rates and offer valuable

Have direct MILP reformulation (solved by efficient MILP solvers)

Exploration models: max-box & hamming distance (MILP reformulation) **Acquisition function**: PWA (exploitation) + Exploration function **Initial Sampling Phase:**

- Box constraints only: Latin Hypercube Sampling (LHS)
- Linear constraints with integer and/or categorical variables:
 - Try LHS first and discard any infeasible samples; if not sufficient,
- Then, solve a MILP problem to sequentially generate samples **Active Learning Phase:**
- Adaptively update/refit the surrogate function (PARC)
- Incorporated distance-based exploration function
- Solve a MILP problem to sequentially generate samples

CONCLUSIONS AND FUTURE WORK

Addressed the experimental planning problems with discrete and

mixed variables, subject to linear equality/inequality constraints

Demonstrated the effectiveness of mixed-integer surrogates and acquisition function (PWAS)

Future Work:

- Extend the framework to handle nonlinear constraints
- Integrate exploration strategies in PWAS to BO methods
- Implement and integrate with automated/autonomous lab