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MOTIVATIONS
(Experimental planning in chemistry often involves discrete

and

Bayesian

mixed variables, with known discrete/mixed-variable constraints

2. These problems can be challenging for conventional

Optimization (BO) approaches to find feasible samples while

k maintaining exploration capability /

OBJECTIVES

Propose alternative surrogate and acquisition models for reali%

.

2. Integrate mixed-integer optimization for feasible sampling

design space representation while preserving exploration

3. Benchmark against state-of-the-art algorithms to demonstrate

\ effectiveness /

GENERAL METHODOLOGY CASE STUDIES

GENERAL STEPS OF EXPERIMENTAL DESIGN

/_
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v) Analyze data
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* Performing chemical and physical experiments is often time-
consuming and costly
* it is important to plan experiments efficiently to gather pertinent

data with a small number of required experiments

K Goal: develop effective experimental planning strategies
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PIECEWISE AFFINE SURROGATE MODEL \
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Define the optimization pr:}hlemﬁ Kot PWAS-
lteration Global optimization
N =0 with mixed variables
- oxr - , using Piecewise
Initial Sampling Phase: (X1, X3, ... Xinit} | Experiment/ e
sample points from feasible domain | Simulation Affine Surrogates
Active Learning @@
Phase XN+ Xy, X, .o Xinie)
e A - fr+1 (f1, f2, - - Finic) FEERD gt
| v Y v
N < N O i
| H‘“E max_— = »> PARC A
| N N | =2
| Y -
| = ﬁ? a block-descent
P
| Y i algorithm to fit PWA
Query new sample
| by optimizing the |« surrogate
| acquisition function fitted PWA surrogate for each partition;
| Ay fitted PWA separation function ot
| (define the boundaries among partitions) E]E]
S - v

Why piecewise affine (PWA) function as surrogate model:

* Allow discontinuities (categorical variables)

 Have direct MILP reformulation (solved by efficient MILP solvers)
Exploration models: max-box & hamming distance (MILP reformulation)
Acquisition function: PWA (exploitation) + Exploration function

Initial Sampling Phase:

* Box constraints only: Latin Hypercube Sampling (LHS)

* Linear constraints with integer and/or categorical variables:

 Try LHS first and discard any infeasible samples; if not sufficient,

* Then, solve a MILP problem to sequentially generate samples

Active Learning Phase:
» Adaptively update/refit the surrogate function (PARC)

* Incorporated distance-based exploration function

/

\Solve a MILP problem to sequentially generate samples

PROBLEM DESCRIPTION

1. Reaction condition optimization (Suzuki-Miyaura cross-coupling)

X=CLBr. I, OTf

~

Y = B(OH),. BPin, BF3K Pd(OAc), (6.25 mol%)

X
Ligand (12.5 mol%)
\ X Me Base (2.5 equiv.)
+ N\ .
‘ N Solvent
N/ N/ 1 min. 100 °C
2%,
THP

Flow rate: 1 ml/min at 100 bar

Optimization variables # options
2 S I d H . . Aryl halide (X) 4
. Solvent design (Menschutkin reaction) SEE

Boronic acid derivative (Y) 3
0 - -+ Base 7
Br o o \ Ligand 11
Lo,, ir N Sol t 4

e N olven . _
" N . Total # of possible combinations 3,696

Ny N
@ | 7 Br” . .

- i . 1. Fully categorical, Max. yield

2. Mixed integer and categorical
*  With linear constraints

. Max. reaction kinetics

Free energy

with Solvent 1

PWAS with genetic

algorithm and three BO variants

Compare

with Solvent 2

'

Reaction coordinate

46 (integer)
1 (categorical) and 7 (binary)
115 (linear) / 5 (linear)

Number of functional group types
Number of auxiliary variables introduced for chemical feasibility
\ Number of inequality/equality design constraints

RESULTS HIGHLIGHTS

/1. Reaction condition optimization (Suzuki-Miyaura cross-coupling)
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CONCLUSIONS AND FUTURE WORK

KAddressed the experimental planning problems with discrete arm
mixed variables, subject to linear equality/inequality constraints

e Demonstrated the effectiveness of mixed-integer surrogates and
acquisition function (PWAS)

Future Work:

e Extend the framework to handle nonlinear constraints

* Integrate exploration strategies in PWAS to BO methods

& Implement and integrate with automated/autonomous lab
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