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Recap - Chapter 7

Common BO policies w/o considering noise and specific obj. fun. model ( model-agnostic )

• One-step lookahead (see Table 7.1): Expected improvement, Knowledge gradient, Probability of
improvement, Mutual information, Posterior mean

• Policies from multi-armed bandits: Upper confidence bound, Thompson sampling
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Scope of Chapter 8

• Chapter 7: Common BO policies w/o noise and discussed under model-agnostic settings

• Chapter 8: How to compute policies, focus on

– Model of the obj. fun.: Gaussian Processes (GPs)

– Model of the noise observation: exact or additive Gaussian noise
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Problem formulation
x ∈ arg max

x ′∈X
α(x ′;D) (1)

Goal: compute/approximate the selected acq. fun. w.r.t the GP models and the selected noise models,
which will then be optimized to identify x ( acq. fun. defines the policy )

• Exact computation (when possible): Expected improvement, Probability of improvement,
Knowledge gradient in discrete domains,
Upper confidence bound

• Effective approximation schemes: Knowledge gradient in continuous domains, Mutual
information, Thompson sampling

Note: due to time constraints, only cover Expected improvement from exact computation and
Thompson sampling from approximation schemes. The book provided very detailed and useful
discussions (recommend reading thoroughly if interested!)

Whether can be computed exactly is model-dependent . Here, the discussion is based on GP only .
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Notation
The GP belief for x ∈ X :

p (f | D) = GP(f ;µD,KD) (2)

The predictive distribution for φ = f (x) at a proposed location x (obj. fun. evaluation):

p (φ | x ,D) = N (φ ;µ, σ2) (3)

The predictive distribution for y measured at x (noisy observation):

Indep. zero-mean additive Gaussian noise: p (y | φ, σn) = N (y ;φ, σ2
n)

Gaussian noise depend on x : p (y | x ,D, σn) = N (y ;µ, σ2 + σ2
n) = N (y ;µ, s2)

(4)

• f : X → R: obj. fun. with GP belief
• D = (x, y): observations
• µ = µD(x): Predictive mean of φ
• σ2 = KD(x , x): Predictive variance of φ

• σ2
n : variance of additive Gaussian noise

• s2: Predictive variance of y
• Exact measurements: y = φ, s2 = σ2
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Notes

• Often, numerical solvers (e.g., PSO, gradient-descent) will be used to optimize (1) to find x

– Iterative solvers: at each step, a new candidate x is proposed, whose corresponding acq. fun. value
will be evaluated. The solver terminates when the set tolerance is met or a maximum number of fun.
eval. is reached

– Why: (1) can be hard or impossible to solve analytically

• Goal of this chapter: compute analytically or approximate the fun. form of the acq. fun so that
candidate x during the optimization procedure can be evaluated

– When evaluating the acq. fun., candidate x is treated as given and fixed (proposed by the solver)

• This presentation: provide a summary

• Mathematical derivations: book
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One-step lookahead acquisition functions

Expected marginal gain to a utility fun.: α (x ; D) =

∫
[ u (D′)− u (D) ] N (y ;µ, s2) dy (5)

How to determine the computation methods for acq. fun.?

• If the integral is tractable : can compute analytically
can use approx. methods if suitable and computationally cheaper

• If the integral is intractable : have to use analytic approx. or numerical integration
For GP, a common choice is Gauss-Hermite quadrature
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Exact computation possible

• Expected improvement (EI)

– u(D): simple reward

• Probability of improvement (PI)

– u(D): improvement to simple reward

• Knowledge gradient (KG) in discrete domains

– u(D): global reward

• Upper confidence bound (UCB)

– multi-armed bandits, analogy to PI
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Expected Improvement
Expected marginal gain in simple reward:

αEI (x ; D) = E [max µD′(x’)|x , D]− maxµD(x) (6)

This expectation can be computed analytically for GPs with exact and noisy observations.

Noiseless case (Exact)

αEI (x ; D) = (µ− φ∗) Φ

(
µ− φ∗

σ

)
︸ ︷︷ ︸

standard normal CDF

+ σ ϕ

(
µ− φ∗

σ

)
︸ ︷︷ ︸

standard normal PDF

(7)

• First term: encourage exploitation, favor points with high expected value µ
• Second term: encourage exploration, favor points with high uncertainty σ
• Exploitation-exploration tradeoff is considered automatically

′ (prime) is used to indicate post-observation quantities;
In the book, φ(·) is used to indicate PDF, to avoid confusion with fun. eval. φ, here, we use ϕ(·) for PDF
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Expected Improvement
Noisy observations (Farzier et al. 2009)

αEI (x ; D) = g(a,b)− µ∗ (8)

• g(a,b) =
∫

max(a + bz) ϕ(z) dz, z is a standard normal random variable
• µ∗ = max µD(x): simple reward of the current data

• µD′(x’) = a + bz: posterior mean evaluated at x’, linear
obtained via linear transformation y = µ+ sz

• a = µD(x’), b = KD(x’,x)
s

Updated simple reward can occur at
• Noisy observations: any previously visited points, including suboptimal ones, due to inherent

uncertainty in the obj. fun.
• Exact observations: only possible at the newly observed point or the incumbent
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Expected Improvement: exact vs. noisy observations

Exact observations
• Only needs to consider the

incumbent for the
improvement

• Reminder: candidate x is
known when compute EI

Noisy observations
• Need to consider every visited point for the improvement
• Lead to an upper envelope
• The formation of the upper envelope is invariant to the order of the lines, and the deletion of non-dominate

lines won’t affect the results → effective preprocessing step proposed by Frazier et al, 2009.
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Expected Improvement: alternative approximation formulations
Frazier et al, 2009: Find analytical expression of EI for noisy case
Alternative: Approximate EI for noisy case, used extensively in practice

• Main idea: Transfer to a noiseless (exact) case, e.g.,

– Plug-in estimate:

◦ Use the exact formulation (7), plug-in estimate for incumbent value φ∗, e.g., φ∗ ≈ maxyyy

– Re-interpolation:

◦ Fit a noiseless GP to imputed values of the obj. fun. at the observed location φφφ = f (xxx), e.g., φφφ ≈ µD(xxx)

• Follow the same procedures as for the exact case

• Assumption: the underlying noiseless EI assumes that our observation will reveal the exact obj.
value (ignore entirely the obs. noise), b/c approx. is w.r.t unobservable φ rather than observed y
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Plug-in estimate: two common ones

- Plug-in estimate for incumbent value φ∗ –> (8.17), (8.18)
- Used empirically and showed various performance

(case-dependent)

• Noisy observations

• (8.17) max. noisy obs.: for very
noisy data –> excessively exploratory

• (8.18) simple reward of the data:
less biased

• Why recommended next observation
location is so different?
- (8.17) and (8.18) only consider
marginals
- (8.16) consider the joint predictive
distribution of y’
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Re-interpolation: Forrester et al, 2006

• Noisy observations

• Re-interpolated noiseless GP using
posterior mean φφφ ≈ µD(xxx)
acq. fun. approx.:
αEI(x ;D) ≈ αEI(x ;xxx ,φφφ)

• (8.19): resulting decision is very similar
to (8.16) this time
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Re-interpolation: Letham et al, 2019
• Noisy observations

• Re-interpolated by marginalizing
rather than imputing the latent obj.
fun. val.:
αEI(x ;D) ≈

∫
αEI(x ;xxx ,φφφ)p(φφφ|xxx ,D)dφφφ

- Integral cannot be computed exactly,
use a quasi-Monte Carlo approx.
- Take exp. of the exact EI for a
noiseless GP fit to exact observations at
the obs. loc.

• (8.20): the general shape of the approx.
acq. fun. agrees with the (8.16),
except near the chosen loc. of (8.16)

- Inherent property of re-interpolation:
acq. fun. vanishes at previously obs.
loc. (property of exact EI, assumption
of approx. methods)
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Take away: EI

• EI acq. fun. (exact/noisy) can be analytically computed

• For noisy cases, different approx. formulations exists (plug-in, re-interpolation)

• Debate about the necessity of repeated measurements at the same location for noisy cases

– Case-dependent

– Necessary: reduce uncertainty

– Not necessary: if desired, measurements in neighboring locations can be sampled

– Remedy: e.g., augmented EI to account for obs. noise (penalize loc. with low S/N)

• General practice:

– Known low S/N (esp. with heteroskedatic noise): avoid using approx. scheme with exact EI

– Otherwise, reasonable, b/c y ≈ φ, s ≈ σ; computationally cheaper
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Effective approximation schemes available

• Knowledge gradient in continuous domains

– e.g., KGCP (Scott et al., 2011)

• Mutual information

– w.r.t x∗ or f ∗

• Thompson sampling (TS)

– exhaustive sampling

– on-demand sampling
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Thompson sampling
Recall:

TS sample from the opt. belief : x ∼ p (x∗ | D) (9)

Computation method

• Reminder: We only consider GP in this chapter, all the discussion is model-dependent

• Compute analytically: special case with specific dist, e.g., Wiener process (rare, can be exploited)

• Approximate: most of the time, b/c the opt. belief dist (9) is complicated
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Thompson sampling
Example: most of the time p (x∗ | D) can only be revealed via brute-force sample
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Thompson sampling

Two-stage implementation: max a draw (acq. fun.) from the obj. fun. posterior

1) Sample a rand. realization of the obj. fun. from its posterior : αTS (x ; D) ∼ p (f | D) (10)
2) Opt. to yield the desired sample : x ∈ arg max αTS (x ; D) (11)

Note: the global optimum of αTS is a sample from

• Desired dist. p (x∗ | D), the opt. belief, and

• Joint dist. of the loc. and val. of the optimum,
p (x∗, f ∗ | D), because f (x) is a sample from p (f ∗ | x∗,D)
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TS: approximate αTS with exhaustive sampling
Suitable if the domain can be covered by a sufficiently small set of points ξξξ, where φpφpφp = fp(ξξξ) whose dist. is
multivariate normal dist. (easy to sample, note, Not taking the mean)

x = arg max φpφpφp ; φpφpφp ∼ p(φpφpφp | ξξξ, D)

p(φpφpφp | ξξξ, D) = N (φpφpφp ; µpµpµp , Σ); µpµpµp = µD(ξξξ); Σ = KD(ξξξ, ξξξ)

• Posterior of the obj. fun.

• Current optimal belief conditioned on D
estimated from the approx. of αTS

• based on 100 TS samples
- achieved with ξξξ: grid of 1000 pts

Subscript p is used (e.g., φp and fp(·)) to denote the entities relevant/calculated based on the posterior of the obj.
fun. to avoid confusion with the notations used in the previous chapters, where f (·) is used to refer to the true latent fun..
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TS: approximate αTS with on-demand sampling
Utilize the opt. routines of the iterative solver when opt. the acq. fun. to max a draw from the sudo
obj. fun. posterior built progressively on demand

• augment our dataset D with the simulated observation (x , φ) → DTS
• sample φ ∼ p(φ | x , DTS)

Note: for stationary covariance fun.,i.e., K(xxx ,x ′x ′x ′) = K(xxx − x ′x ′x ′), using sparse spectrum approx. to
estimate the posterior GP can dramatically accelerate the optimization of acq. fun. with TS

M. Zhu - UoM - BO Book Club Chapter 8 23/25



TS: approximate αTS with on-demand sampling
Utilize the opt. routines of the iterative solver when opt. the acq. fun. to max a draw from the sudo
obj. fun. posterior built progressively on demand

• augment our dataset D with the simulated observation (x , φ) → DTS
• sample φ ∼ p(φ | x , DTS)

Note: for stationary covariance fun.,i.e., K(xxx ,x ′x ′x ′) = K(xxx − x ′x ′x ′), using sparse spectrum approx. to
estimate the posterior GP can dramatically accelerate the optimization of acq. fun. with TS

M. Zhu - UoM - BO Book Club Chapter 8 23/25



Take away: TS

• Efficient approximation schemes available for TS under different assumptions

– When the domain can be covered by a small set: exhaustive sampling

– When not possible: on-demand sampling

◦ Accelerating method (if stationary): use sparse spectrum approx, to estimate the GP posterior

• Not covered in this presentation, but in the book

– TS is often integrated within the efficient approx. scheme for mutual information policies

• Other notes: nowadays, TS is getting more attention since it is easily parallelizable –>
computational efficient for batch BO, parallel BO, ... for distributed/multi-agent learning
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Summary

• Discussed computation methods (analytically/approximately), focusing on
– Expected improvement (can be calculated both analytically and approximately)
– Thompson sampling (most of the time only possible via approximation, special case exists)

• Important : whether the policy can be computed analytically or approximately depends on the obj.
fun. and noise models selected

– Discussion in this chapter: GP models as the obj. fun. model s.t exact or additive Gaussian noise
– Depending on the model and the problem, one may prefer one policy to the other

• If analytical expression available (comparing to numerically approx. ones), policy may be optimized
more efficiently using gradient-based methods

• Chapter 9: more implementation details

• Thank you Questions?
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