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Introduction
• Optimization problem:

find xxx∗ ∈ argmin
xxx∈D

f(xxx)

• Many decision making problems (hyperparameter tuning in machine learning, DOE in engineering
design,...) require identify a global optimum w/o an explicit analytic expression f(xxx)

• Such problems are often referred to as black-box opt. prob., which can be solved by
– Evolutionary algorithms
– Direct search methods
– Surrogate-based opt. methods

Black-box

Useful when experiment/simulation is expensive to evaluate,
(want to reduce # of required evaluations/observations to locate satisfactory candidate)
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Surrogate-based optimization methods - General framework

• Objective function: the underlying latent function, whose explicit analytic expression is unknown
• Real experiment/simulation model: given an input decision vector, we can observe output of obj. fun.
• Surrogate model: approximate the behavior of the obj. fun.
• Acquisition function: trade-off b/t exploitation and exploration to suggest the next point to observe

Initial sampling stage:
initial dataset D e.g., random sampling, LHS, and

observe obj. fun. values at sampled points
update surrogate fit with the initial dataset

Repeat
x← POLICY(D) minimize the acq. fun.
y← OBSERVE(x) observe/sample at the chosen location, obj. fun.
D ← D ∪ {(x, y)} update dataset
update the surrogate and acq. fun. with the updated dataset

Until termination condition reached e.g., budget exhausted
Return D, x∗
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Overview

• C-GLISp: Pref-based optimization with unknown constraints

– Numerical problems

– Case study: automated-driving for lane-keeping and obstacle-avoidance

• PWAS: Global and pref-based optimization with mixed variables using piecewise affine surrogates

– Numerical problems

– Case study: experimental planning
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C-GLISp: Pref-based optimization with unknown constraints



Motivation

• Objective function may not always be quantifiable, e.g.,

– Qualitative (subjective) feedback, not explicitly defined, difficult to evaluate

– Multi-objective function, whose relative weights are hard to determine a prior to form a single metric

• Challenge of unknown/non- or hard-to-quantifiable constraints

– In many real-world problems, not all constraints are known or can be explicitly defined at the beginning

– Unknown constraints can hinder the implementation of certain processes at some decision variables,
while traditional methods cannot directly incorporate this information

To address these challenges, we propose the use of a preference-based optimization method.
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Problem formulation
Target problem:

find xxx⋆ such that π(xxx⋆,xxx) ≤ 0, ∀xxx ∈ ΩS ∩ ΩG

implying f(xxx⋆) ≤ f(xxx)
(1)

• π(xxx1,xxx2): preference function

• f(xxx): unknown latent fun. assumed to exist, can be estimated with the expressed prefs

• ΩG: unknown feasibility set

• ΩS: unknown satisfactory set

• D: domain (known constraints/bounds)

Unknown: not explicitly defined, i.e., no known analytic expression
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Main assumptions
• Obj. fun. f cannot be directly quantified, but indirectly observed in two ways:

– Preference function: π(xxx1,xxx2)

π(xxx1,xxx2) =


−1 if xxx1 “better” than xxx2 [f(xxx1) < f(xxx2)]
0 if xxx1 “as good as” xxx2 [f(xxx1) = f(xxx2)]
1 if xxx2 “better” than xxx1 [f(xxx1) > f(xxx2)].

– Satisfaction function: the set ΩS contains all the vectors xxx leading to a performance that the
decision-maker judges satisfactory, which, like ΩG cannot be explicitly expressed

S(xxx) =
{

0 if xxx /∈ ΩS
1 if xxx ∈ ΩS,

(2)

• The set ΩG cannot be explicitly expressed, but given a vector xxx ∈ D, a decision-maker can assess
the value of the feasibility function G : D → {0, 1} defined as

G(xxx) =
{

0 if xxx /∈ ΩG
1 if xxx ∈ ΩG

(3)
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Why include feasibility and satisfaction function

• if using pairwise comparison information only: infeasible/unsatisfactory sample only indirectly
reveals itself as such by losing pairwise comparisons against feasible/satisfactory ones

• If using additional feasibility and satisfaction functions: exploit the information on whether xxx ∈ ΩG
and/or xxx ∈ ΩS to facilitate the optimization process

– Explore the infeasible and/or unsatisfactory region will be explicitly penalized and therefore reduce
the number of samples xxxi 6∈ ΩG and/or xxxi 6∈ ΩS
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Proposed solution strategy - Overview of C-GLISp

• Step 1: Learning unknown feasibility/satisfaction constraints functions

• Step 2: Learning unknown preference function

• Step 3: Minimizing the acquisition function to identify the next sample to observe

• Iterate steps 1-3 until some terminal conditions are met
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Proposed solution strategy - Step 1

Step 1: Learning unknown feasibility/satisfaction constraints functions with Inverse Distance Weighting
(IDW) interpolation function (A. Bemporad, 2020)

• Decision-maker: provide for samples i = 1 . . . ,N

– feasibility vector GF = [G1 . . . GN]
′ ∈ {0, 1}N with

Gi = G(xxxi) (4)

– satisfaction vector SF = [S1 . . . SN]
′ ∈ {0, 1}N with

Si = S(xxxi) (5)
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Proposed solution strategy - Step 1
• Surrogate fitting:

– Predict the probability of satisfying the feasibility constraint xxx ∈ ΩG with Ĝ : D → R

Ĝ(xxx) =
N∑

i=1
νi(xxx)Gi, (6)

where νi(xxx) : D → R for i = 1 . . . ,N is defined as

νi(xxx) =


1 if xxx = xxxi
0 if xxx = xxxj, j 6= i

wi(xxx)∑N
i=1 wi(xxx)

otherwise
(7)

Here wi : D \ {xxxi} → R is the following IDW function (VR. Joseph & L. Kang, 2011): wi(x) = e−d2(x,xi)

d2(x,xi)

where d : D ×D → R denotes the squared Euclidean distance: d(xxx,xxxi) = ‖xxx− xxxi‖2
2

– Predict the probability of satisfying the satisfaction constraint xxx ∈ ΩS with Ŝ : D → R, defined
similarly as Ĝ

M. Zhu - PhD Thesis Defense - May 30, 2024 12/48



Proposed solution strategy - Step 2

Step 2: Learning the preference function

• Decision-maker: provide

– preference vector B = [b1 . . . bM]T ∈ {−1, 0, 1}M with

bh = π(xxxi(h),xxxj(h)) (8)

for xxxi, xxxj ∈ D such that xxxi 6= xxxj, ∀i 6= j, i, j = 1, . . . ,N

M: number of expressed preferences, 1 ≤ M ≤
(N

2
)

h ∈ {1, . . . ,M}: index enumerating the preferences

i(h), j(h) ∈ {1, . . . ,N}, i(h) 6= j(h)
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Proposed solution strategy - Step 2
(A. Bemporad & D. Piga, 2021)

• Surrogate model:

– Parameterize the surrogate function f̂ : D → R as a linear combination of radial basis functions (RBFs)

f̂(xxx) =
N∑

k=1
βkϕ(ϵd(xxx,xxxi)), (9)

ϕ : R→ R is an RBF

β = [β1 . . . βN]
T: unknown coefficients to be determined (to be discussed in the following slides)

ϵ > 0: scalar param. defining the shape of the RBF (periodically updated via K- fold cross-validation)
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Proposed solution strategy - Step 2
(A. Bemporad & D. Piga, 2021)

• Integrate expressed preferences with the surrogate:

– Use the expressed preferences bh to shape f̂ by imposing the following constraints:

f̂(xxxi(h)) ≤ f̂(xxxj(h))− σ if bh = −1

f̂(xxxi(h)) ≥ f̂(xxxj(h)) + σ if bh = 1

|̂f(xxxi(h))− f̂(xxxj(h))| ≤ σ if bh = 0

(10)

for h = 1, . . . ,M, where σ > 0 is a given scalar that avoids the trivial solution f̂(x) ≡ 0

– Goal : fit f̂ so that it satisfies the implicit rankings of the underlying latent function
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Proposed solution strategy - Step 2
• Surrogate fitting: (A. Bemporad & D. Piga, 2021)

– Coefficients βββ describing f̂ is obtained by solving the following convex QP problem

minβ,εh

M∑
h=1

chεh +
λ

2

N∑
k=1

β2
k

s.t.
N∑

k=1
βk(ϕ(ϵd(xxxi(h),xxxk))− ϕ(ϵd(xxxj(h),xxxk))) ≤ −σ + εh, ∀h : bh = −1

N∑
k=1

βk(ϕ(ϵd(xxxi(h),xxxk))− ϕ(ϵd(xxxj(h),xxxk))) ≥ σ − εh, ∀h : bh = 1∣∣∣∣∣
N∑

k=1
βk(ϕ(ϵd(xxxi(h),xxxk))− ϕ(ϵd(xxxj(h),xxxk)))

∣∣∣∣∣ ≤ σ + εh, ∀h : bh = 0

h = 1, . . . ,M

(11)

ch: positive weights; εh: positive slack variables to relax the constraints imposed by (10)

– The expressed preferences: soft constraints (maximize constraint satisfaction while still allowing
inconsistent expressed rankings and/or imperfect surrogate model to some extent)
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Proposed solution strategy - Step 3

Step 3: Construction and minimization of the acquisition function

• Acquisition function: minimized to identify the next sample xxxN+1 to observe

xxxN+1 = argmin
xxx∈D

a(xxx) (12)

• How to construct an acquisition function based on the information gathered?

– Minimizing f̂ greedily to generate the next sample xxxN+1 may lead the solver to converge to a point
that is not the global optimum

– Ideal: balance exploitation of f̂, and safe exploration within unexplored regions
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Proposed solution strategy - Step 3

• Acquisition function: a : D → R is defined as

a(xxx) = f̂(xxx)
∆F̂︸︷︷︸

surrogate of pref. fun.

− δEzN(xxx)︸ ︷︷ ︸
pure exploration

+ δG(1 − Ĝ(xxx))︸ ︷︷ ︸
penalize infeasible samples

+ δS(1 − Ŝ(xxx))︸ ︷︷ ︸
penalize unsatisfactory samples

(13)

– Surrogate of pref. fun.: exploitation of the leaned latent fun.
∆F̂ = maxi{̂f(xxxi)} −mini{̂f(xxxi)}: range of f̂ on the samples in {xxx1, . . . ,xxxN}

– Pure exploration: search regions with limited/no samples to reduce the uncertainty associated with f̂

– Penalization terms: explicitly avoid the exploration in the regions with low probabilities of being
feasible and satisfactory by penalizing the (estimated) infeasibility x 6∈ ΩG and unsatisfactory
performance xxx 6∈ ΩS
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Proposed solution strategy - Step 3

Pure exploration term zN(xxx):

• Modified the IDW exploration function in (A. Bemporad & D. Piga, 2021) with the following guidelines:
– Encourage the exploration of regions of D further away from the current best solution in the early

iterations and reduce its effects as the number N of experiments increases
– Empirically observed to better escape from local minima

zN(xxx) =
{

0 if xxx ∈ {xxx1, . . . ,xxxN}(
1 − N

Nmax

)
tan−1

(∑N
i=1 ri(xxx∗

N)∑N
i=1 ri(xxx)

)
+ N

Nmax
tan−1

(
1∑N

i=1 ri(xxx)

)
otherwise

(14)
where ri(x) = 1

d2(xxx,xxxi)
; x∗N: best decision variable found up to iteration N

Nmax: max. allowed number of exp., common stopping criterion

arc tangent fun.: prevent new sampled pt from getting excessively far away from the existing ones
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Proposed solution strategy - Step 3

Penalization terms :

• Use ample stand. dev. to update, after each iteration, the weights δG and δS as follows:
δG = (1 − σ̂G)δG,default

δS = (1 − σ̂S)δS,default (15)
where

σ̂G = min

1,

√∑N
i=1(Ĝ(xixixi)− G(xixixi))2

N − 1


σ̂S = min

1,

√∑N
i=1(Ŝ(xixixi)− S(xixixi))2

N − 1

 (16)

δG,default and δS,default are default values set by the user
δG,default > δS,default (infeasibility is penalized more than unsatisfactory behavior)
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Proposed solution strategy - Step 3

• Acquisition function: minimized to identify the next sample xxxN+1 to observe

xxxN+1 = argmin
xxx∈D

a(xxx)

a(xxx) = f̂(xxx)
∆F̂

− δEzN(xxx) + δG(1 − Ĝ(xxx)) + δS(1 − Ŝ(xxx))

• Different opt. methods can be used to solve the minimization problem

– e.g., Particle Swarm Optimization. (PSO), evolutionary algorithms, ...
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Numerical problem

“camelsixhumps-hard and soft constrained” (CHSC): include both feasibility and satisfaction constraints

• Objective function:
f(x, y) = (4 − 2.1x2 + x4/3)x2 + xy + (4y2 − 4)y2

• Feasibility constraints:
g2(x, y) = x2 + (y + 0.04)2 < 0.8

• Satisfaction constraints:

g1(x, y) :
[ 1.6295 1

0.5 3.875
−4.3023 −4

−2 1
0.5 −1

]
[ x

y ] <

[ 3.0786
3.324

−1.4909
0.5
0.5

]

• Search domain D: [−2, 2]× [−1, 1]

• The two unconstrained optima are both feasible but NOT satisfactory
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Numerical problem

“camelsixhumps-hard and soft constrained” (CHSC): include both feasibility and satisfaction constraints

CHSC ( G: Ellipsoid; S: Polytope)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

• Blue ×: pts generated from initial sampling phase
• Black ◦: pts generated from active learning phase
• Purple ♢: global unconstrained optimizer
• Red •: constrained optimizer found after Nmax iter
• Green □: global constrained optimizer

Observations
• As N increases, the pts generated by C-GLISp

approach the constrained optimizer
• Most of the pts generated during the active

learning lay in the feasibility and satisfaction
regions
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Case study - Overview

• General description: automated driving with lane-keeping (LK) and obstacle-avoidance (OA)
• System description: simplified 2-DOF kinematic bicycle model with the front wheel as the

reference point

ẋf =v cos(θ + δs)

ẏf =v sin(θ + δs)

θ̇ =
v sin(δs)

L

±

µ

L

v

x

y
s

• Control strategy: linear time-varying (LTV) MPC, with constant sampling time
• Goal: Tune the MPC parameters (sampling time, prediction horizon, control horizon, and weight

matrix of manipulated variables) using expressed preferences and feasibility and satisfaction
indications by the calibrator
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Case study - Guideline of the calibrator

1. Whether it is feasible

2. Whether it is satisfactory

3. Whether the vehicle guarantees passengers’ comfort during the OA period, for example, by not
changing velocities or moving the lateral position too aggressively

4. whether the deviations of the velocity from the ref. val. is minor in both LK and OA periods

5. whether aggressive variations of steering angles are avoided

6. If a conflict combination among criteria mentioned above appears, criterion (1) has the highest
priority, and if the conflict is among criteria (2)–(5), the control policy that leads to qualitatively
safer driving practice based on the calibrator’s experience is preferred
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Case study - Example query window
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• At each iter., the calibrator is asked to

express
1) pref. between the newly observed
exp. and the current best exp.
2) feasibility assess. for the new exp.
3) satisfaction assess. for the new exp.

• Left panels: preferred, feasible,
unsatisfactory

• Right panels: infeasible (tcomp > Ts),
unsatisfactory

• Note: infeasible exp. is NOT
implementable (simulated exp. is used
in the case study)
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Case study - Results
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• After 50 simulated closed-loop exp. and
49 pairwise comp.

• Best MPC design parameters
Ts = 0.085 s
ϵc = 0.100
Np = 23
log(qu11) = -0.323
log(qu22) = -3.71
tcomp = 0.0789 s
(worst-case computational time)

• C-GLISp can find satisfactory results
within a small number of iter.
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PWAS: Global and pref-based optimization with mixed variables using
piecewise affine surrogates



Motivation

• The variables xxx can be defined over a mixed-variable domain

– Continuous, integer (ordinal), categorical (non-ordinal)

• Many engineering prob. (e.g exp. design) often include constraints of mixed-integer nature

• Existing surrogate-based methods often address constraints by penalization which can still suggest
infeasible samples to observe, especially when mixed-integer linear constraints are present

Goal: Solve medium-sized mixed-variable nonlinear opt. problems s.t mixed-integer linear equality and/or
inequality constraints
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Problem formulation
Optimization problems with mixed variables and linear constraints

find XXX∗ ∈ argmin
XXX∈Ω

f(XXX) (17a)

s.t. Aeqxxx + Beqyyy + Ceqzzz = beqbeqbeq (17b)
Aineqxxx + Bineqyyy + Cineqzzz ≤ bineqbineqbineq (17c)

• XXX = [xxx; yyy; zzz]
– continuous xxx, integer yyy, one-hot encoded categorical zzz
– xxx ∈ Rnc , yyy ∈ Znint , ℓxℓxℓx ≤ xxx ≤ uxuxux, ℓyℓyℓy ≤ yyy ≤ uyuyuy
– Z = [Z1, . . . ,Znd ], with ni classes in each categorical variable Zi, i = 1, . . . , nd.

◦ Zi is one-hot binary encoded into the subvector [z1+di−1 . . . zdi ]T ∈ {0, 1}ni ∀i = 1, . . . ,nd, where
d0 = 0, di =

∑i
j=1 nj,

◦ zzz ∈ {0, 1}dnd : complete vector of binary variables after the encoding, with
zzz ∈ Ωz = {zzz ∈ {0, 1}dnd :

∑ni
j=1 zj+di−1 = 1, ∀i = 1, . . . ,nd}.

• Domain Ω = [ℓxℓxℓx,uxuxux]× ([ℓyℓyℓy,uyuyuy] ∩ Z)× Ωz
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Proposed solution strategy

PWAS: Global optimization with mixed variables using Piecewise Affine Surrogates

• Why PWA:

– Allow discontinuities introduced by sharp transitions induced by taking values in different classes of
the categorical variables

– PWA surrogates have a direct mixed-integer linear reformulation and, therefore, can be minimized by
efficient MILP solvers (e.g., Gurobi and GLPK)
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Overview of PWAS

• Change of variables: scaling and encoding

• Surrogate fitting: Piecewise affine function

• Exploration function: distance-based and frequency-based

• Acquisition function
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PWAS - change of variables

• Continuous variables: scale

• Categorical variables: one-hot encoded

• Integer variables: treat as categorical or continuous

– Depend on the number of possible combinations
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PWAS - updated problem formulation
New opt. vector X̄̄X̄X = [̄x̄x̄x; ȳ̄ȳy; zzz] ∈ Ω̄, Problem (17) translates to

• Scenario one (treat integer variables as categorical)
find X̄̄X̄X∗ ∈ argmin

X̄̄X̄X∈Ω̄
f(S(X̄̄X̄X))

s.t. Āeqx̄̄x̄x + B̄eqȳ̄ȳy + Ceqzzz = b̄eqb̄eqb̄eq

Āineqx̄̄x̄x + B̄ineqȳ̄ȳy + Cineqzzz ≤ b̄ineqb̄ineqb̄ineq.

(18a)

• Scenario two (treat integer variables as continuous)

find
[
X̄̄X̄X∗

yyy∗

]
∈ arg min

X̄∈Ω̄,y∈[ℓy,uy]∩Z
f(S(X̄̄X̄X))

s.t. Āeqx̄̄x̄x + Beqyyy + Ceqzzz = b̄eqb̄eqb̄eq

Āineqx̄̄x̄x + Bineqyyy + Cineqzzz ≤ b̄ineqb̄ineqb̄ineq

(18b)

Note:
• Denote D ⊆ Ω̄ the set of admissible vectors X̄̄X̄X satisfying the constraints
• Evaluating the obj. fun. requires the original values in XXX, denote S : Ω̄ 7→ Ω the inverse scaling/encoding

mapping of X̄̄X̄X, i.e., XXX = S(X̄̄X̄X)
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PWAS - surrogate fitting

Consider N samples X̄1X̄1X̄1, . . ., X̄NX̄NX̄N ∈ Rn and their corresponding function evaluations f(X̄1X̄1X̄1), . . ., f(X̄NX̄NX̄N) ∈ R.

Goal: Define the PWA surrogate function f̂ over a polyhedral partition of Ω̄ into K regions.

PWA separation function ϕ : Rn 7→ R
ϕ(X̄̄X̄X) = ωωωT

j(X̄̄X̄X)X̄̄X̄X + γj(X̄̄X̄X) (19a)
where ωωωj ∈ Rn and γj ∈ R, j = 1, . . . ,K, need to be determined, and

j(X̄̄X̄X) = arg max
j=1,...,K

{ωωωT
j X̄̄X̄X + γj}, (19b)

PWA surrogate function f̂ as
f̂(X̄̄X̄X) = aaaT

j(X̄̄X̄X)X̄̄X̄X + bj(X̄̄X̄X) (19c)
where aaaj ∈ Rn and bj ∈ R, j = 1, . . . ,K, also need to be determined.

Note: f̂ is possibly non-convex and discontinuous.
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PWAS - surrogate fitting
Piecewise affine function with PARC (Bemporad, 2023 )

Example: Branin function (800 training samples, 10 PWA partitions):
f(x1, x2) = a(x2 − bx2

1 + cx1 − r)2 + s(1− t) cos(x1) + s

a = 1, b =
5.1
4π2 , c =

5
π
, r = 6, s = 10, t = 1

8π
−5 ≤ x1 ≤ 10, 0 ≤ x1 ≤ 15.
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Remark:
Our purpose is to obtain a highly
accurate approx. of the obj. fun.
around the global optimal solution
and not necessarily over the entire
domain of X̄̄X̄X, which usually requires
much fewer samples
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PWAS - max-box exploration method
Goal:

• Define a fun. Ect : Rnct 7→ R mapping a generic numeric vector x̄̄x̄x ∈ Rnct into a nonnegative value

Desired features:
• Zero at given samples x̄̄x̄x1, . . . , x̄̄x̄xN

• Grows away from the given samples
• Can be solved by MILP solvers

Max-box exploration method:
• Bi(βct) = {x̄̄x̄x : ‖x̄̄x̄x − x̄̄x̄xi‖∞ ≤ βct}
• Ect(̄x̄x̄x) = min{βct ≥ 0 : x̄̄x̄x ∈ Bi(βct) for some i = 1, . . . ,N}
• Maximizing Ect(̄x̄x̄x) is equivalent to finding the largest value βct and a vector x̄̄x̄x∗ outside the interior

of all boxes Bi(βct)
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PWAS - max-box exploration method
Example: x̄̄x̄x ∈ R2, D = [−3, 9]× [−2, 8], 3 existing samples x̄1, x̄2, x̄3, run for 20 sequential iterations
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PWAS - Hamming distance method
Goal:

• Define a fun. Edt : {0, 1}d 7→ R mapping a binary vector zzz ∈ {0, 1}d into a nonnegative value

Desired features:
• Account frequency of occurrence of a particular combination of binary variables
• Select the ones occur less frequently
• Can be solved by MILP solvers

Hamming distance exploration method:
• Given two binary vectors zzz = [z1, . . . , zd]T ∈ {0, 1}d and zzzi = [z1

i . . . zd
i ]

T ∈ {0, 1}d

• Hamming distance: dH(zzz, zzzi) =
∑d

m=1|zm − zm
i |

• Linear encoding: dH(zzz, zzzi) =
∑

m:zm
i =0 zm +

∑
m:zm

i =1(1 − zm)

• Edt(zzz) quantifies the average number of different binary components between zzz and the given N
vectors zzz1, . . ., zzzN: Edt(zzz) = 1

dN
∑N

i=1 dH(zzz, zzzi)

• Maximizing Edt(zzz) to find zzz∗
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PWAS - Hamming distance method
Example: three categorical variables Z = [Z1,Z2,Z3]

• Z1 ∈ {A,B}, Z2 ∈ {A,B,C,D,E}, and Z3 ∈ {A,B,C}
• Three initial samples: Z1 = [A,E,C], Z2 = [B,B,B], Z3 = [A,D,C]

• Binary encode and get the corresponding vectors zzz1, zzz2, zzz3 ∈ {0, 1}10

• Solve zzz∗ ∈ argmaxzzz∈D Edt(zzz) to identify zzz4 = zzz∗ and its decoded form Z4.

Iteration 1 2 3 4 5 6 7 8 9 10
Z1 B A B A B A B A B A
Z2 A C D A E B C D A E
Z3 A B A C A B C A B C
Iteration 11 12 13 14 15 16 17 18 19 20
Z1 B A B A B A B A B A
Z2 B C D A E B C D A E
Z3 A B C A B C A B C A
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PWAS - Acquisition function

find X̄̄X̄XN+1 ∈ argmin
X̄̄X̄X∈D

f̂(X̄̄X̄X)

∆F − δ1Ect(̄x̄x̄x)− δ2Ect(ȳ̄ȳy)− δ3Edt(zzz) (20a)

find
[
X̄̄X̄XN+1
yyyN+1

]
∈ arg min

X̄̄X̄X∈D,y∈[ℓy,uy]∩Z

f̂(X̄̄X̄X)

∆F − δ1Ect(̄x̄x̄x)− δ2Edt(ȳ̄ȳy)− δ3Edt(zzz) (20b)

where
∆F = max

{
max

i=1,...,N
f(XXXi)− min

i=1,...,N
f(XXXi), ϵ∆F

}

• ϵ∆F > 0: a threshold to prevent division by zero

• ∆F: scaling factor, eases the selection of the exploration parameters δ1, δ2, and δ3
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Numercial problem - linearly constrained
Problem description: nc = 3, nint = 4, and nd = 2 with n1 = 3 and n2 = 2

f(X) =

{
|f1| nd2 = 0
f1 nd2 = 1

s.t Aineqx + Bineqy ≤ bineq

where f1(x, y) =


fHorst6(x) + fhs044(y) nd1 = 0
0.5fHorst6(x) + fhs044(y) nd1 = 1
fHorst6(x) + 2fhs044(y) nd1 = 2

fHorst6(x) = xTQx + px

Q =

 0.992934 −0.640117 0.337286
−0.640117 −0.814622 0.960807
0.337286 0.960807 0.500874


p =

[
−0.992372 −0.046466 0.891766

]
fhs044(y) = x0 − x1 − x2 − x0x2 + x0x3 + x1x2 − x1x3

Aineq =



0.488509 0.063565 0.945686
−0.578592 −0.324014 −0.501754
−0.719203 0.099562 0.445225
−0.346896 0.637939 −0.257623
−0.202821 0.647361 0.920135
−0.983091 −0.886420 −0.802444
−0.305441 −0.180123 −0.515399


, Bineq =


1 2 0 0
4 1 0 0
3 4 0 0
0 0 2 1
0 0 1 2
0 0 1 1


bineq = [2.86506, −1.49161, 0.51959, 1.58409, 2.19804, −1.30185,

− 0.73829, 8, 12, 12, 8, 8, 5]T

PWAS implementation
• Formulated with the PuLP library
• Solved by Gurobi’s MILP solver

to find the next query point

Global optimum
• Analytical: -62.579
• PWAS: -62.579 ± 3.5275e-08

(over 20 random repetitions)
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Case study - Menschutkin reaction

Goal: Select a solvent to
maximize the reaction rate k

A good solvent can help lower
the liquid phase activation
Gibbs
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Problem description
Optimization variables - 54 in total (Gui et al, 2023)

• 46 integer variables, indicating the number of each functional group presented in the designed
solvent

• 1 categorical variable (m), auxiliary variable, which equals to 1 for an acyclic molecule, 0 for a
monocyclic molecule and −1 for a bicyclic molecule

• 7 binary variables for structure-related constraints
• integer variables are upper bounded to reduce the complexity of the designed solvent
• one-hot binary encode the categorical and binary variables

Inequality constraints - 116 in total
• structure-property related
• chemical feasibility and complexity related

Equality constraints - 5 in total
• structure-property related
• chemical feasibility and complexity related

M. Zhu - PhD Thesis Defense - May 30, 2024 44/48



Results
PWAS

Rank Chemical formula ln k
QM pred

1 CH3NHCHO -5.92 -5.92
2 OHCH2NO2 -6.46 -6.49
3 CH2OHCH2NO2 -6.72 -6.69
4 (CH3)2SO -6.82 -6.82
5 (CH2)2OHCH2NO2 -6.93 -6.93
6 CH3CHOHCH2NO2 -6.96 -6.97
7 CH2=COHCH2NO2 -6.98 -6.97
8 CH=CHOHCH2NO2 -7.00 -6.98
9 (CH2)3OHCH2NO2 -7.10 -7.10
10 CHCH2=CHOHCH2NO2 -7.11 -7.11

QM-DoE-CAMD

Rank Chemical formula ln k
QM pred

1 CH2OHCH2NO2 -6.72 -5.50
2 (CH3)2SO -6.82 -5.59
3 CH2OHCH2NO2 -6.72 -6.28
4 CH2=COHCH2NO2 -6.98 -6.66
5 (CH2)2OHCH2NO2 -6.93 -6.74
6 CH3CHOHCH2NO2 -6.96 -6.87
7 (CH3)2COHCH2NO2 -7.23 -6.91
8 CH=CHOHCH2NO2 -7.00 -6.92
9 CH2CH2=COHCH2NO2 -7.15 -6.97
10 CH3NHCHO -5.92 -7.00

• The top 10 solvents obtained using PWAS are consistent with the top 10 solvents ranked based on QM
calculation within the whole feasible domain

• The pred. val. based on PWAS are closer to the QM calculated values compared to the ones calculated
from QM-DoE-CAMD (MLR) method
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Conclusion and discussions

• Discussed two methods

– C-GLISp: address problems with non-quantifiable obj. fun. and unknown constraints

– PWAS: address problems with mixed-variables with linear equality/inequality constraints

• Both methods can achieve satisfactory performance within small number of experiments for their
target problems

• Future research directions

– Preference-based opt. methods: transition from conventional “human-in-the-loop” opt. to
“AI/LLM-in-the-loop” opt.

– Mixed-variable opt. methods: investigate the adoption of acquisition strategies in PWAS to other BO
methods, especially the ones with tree-based kernels
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C-GLISp



Pref-based optimization for multi-objective function
Comment from Prof. Fabio Schoen:

Did you consider multi-objective Bayesian optimization, which might be used to build a part of
the Pareto front, leaving the request for preference a posteriori?

We did not consider multi-objective BO explicitly, but there are several works in literature that explored
this area. For example (R. Ozaki, 2024), (M. Abdolshah, 2019) , (A. Ahmadianshalchi, 2024). In general, similar
to GLISp/C-GLISp, preferences from the decision-maker are used as constraints to structure the utility
function for acquisition.

In the original GLISp paper (A. Bemporad & D. Piga, 2020), GLISp is used to learn a preferred Pareto optimal
solution for MOO
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Preliminary: pref-based optimization

• Goal: leverage the knowledge of preferences provided by the user to guide the optimization process

• Key features:

– Often interactive and involve an iterative process

– Rely on preference elicitation techniques: direct assessment, pairwise comparisons, interactive
visualization

– Preference modeling: learning utility functions, learning preference relations, function approximation

Focus on pref-based opt. methods that learn a surrogate model (utility function) respecting the prefs
expressed by the decision-maker (constraints) based on pairwise comparisons
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Preliminary: active pref-based optimization

Assumptions: (A. Bemporad and D. Piga, 2021)
• Simulation/Real experiment: expensive to evaluate
• Optimization vector xxx: bounded, s.t known constraints
• Closed-loop performance objective function f(xxx) : Rn → R is not available,(latent function)
• We can only express a preference between two choices, implying the relation between their fun. eval. of

the latent fun.:

π(xxx1,xxx2) =


−1 if xxx1 “better” than xxx2 [f(xxx1) < f(xxx2)]
0 if xxx1 “as good as” xxx2 [f(xxx1) = f(xxx2)]
1 if xxx2 “better” than xxx1 [f(xxx1) > f(xxx2)].

The following transitivity properties hold for all xxx1,xxx2 ∈ Rn:
π(xxx1,xxx1) = 0, π(xxx1,xxx2) = −π(xxx2,xxx1)

π(xxx1,xxx2) = π(xxx2,xxx3) = −1⇒ π(xxx1,xxx3) = −1

Goal: Find a global optimum xxx∗ (= ”not worse” than any other xxx)
Find xxx⋆ such that π(xxx⋆,xxx) ≤ 0, ∀xxx ∈ D, implying f(xxx⋆) ≤ f(xxx)
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Preference modeling
Discussed extensively in (C. Wirth, et al., 2017)

• Learning utility functions: evaluate individual alternatives
– Estimate a utility score for each option or item, which reflects the user’s preference.
– Assume that user preferences can be represented by a numerical value, where higher values indicate

stronger preferences

• Learning preference relations: compare pairs of competing alternatives
– Model the relative preference between pairs of items/options instead of absolute utility values

• Function approximation
– Use machine learning algorithms to approximate the function that maps features to preference scores
– A generalization of learning utility functions
– Features are not necessarily defined, e.g., deep learning can automatically learn representations from

raw data (e.g., images, text) and can integrate various data types into a single model
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Feasibility and satisfaction function in C-GLISp
Comment from Prof. Fabio Schoen:

Why this concept (satisfaction function) should not lead to a constraint ... Why these two concepts
are treated separately?

You are correct, the satisfaction function leads to constraints. Here, it is mainly used to facilitate the problem-
solving process by providing additional information to guide the search. Since the relative importance is different
(penalized different), they are treated separately to make most use of each experiment.

When the decision-maker judges for the satisfaction function, unknown constraints related to implementation
details are ignored, i.e., solely judged based on the final performance. This is relevant for simulation case studies.

Consider two scenarios:
• Simulation case study: ΩS may not be a subset of ΩG, for example when the preference-based optimization

process is carried out in simulation: a sample may lead to satisfactory performance but would not be
implementable due to hardware limitations.

• Physical experiments: ΩS is necessarily a subset of ΩG, as no performance would be available for evaluation
when the parameters are infeasible
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Feasibility and satisfaction function in C-GLISp - cont.

It is also useful to provide implicit rankings to help refine the solution, for example:
current best: feasible, satisfactory
sample one: feasible, unsatisfactory
sample two: feasible, satisfactory
When comparing the current best with samples one and two, assume the current best is still preferred to
both samples one and two. If we don’t have information on the satisfaction function, we don’t know the
implicit ranking b/t samples one and two unless we make another comparison among them explicitly.

Nevertheless, each new sample will provide one more data point to train the surrogate of the satisfaction
function to promote sampling within the regions that can lead to a satisfactory performance with a higher
probability.
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Proposed solution strategy - Step 1

Why use IDW interpolation functions?

• Other binary classification methods

– Logistic regression or random forests: accuracy with a small number of training data is limited

– Support vector machines (SVMs): empirical tests revealed that IDW outperform SVM in this case

• The functions Ĝ and Ŝ generated by IDW interpolation are always between 0 and 1 by construction
(Lemma 1-P2 (A. Bemporad, 2020))

– Can be interpreted as probabilities of being feasible/satisfactory
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Proof for Ĝ ∈ [0, 1]

Adopted from the proof for Lemma 1-P2 of (A. Bemporad, 2020)

For all xxx ∈ Rnx , the value vi(xxx) ∈ [0, 1], ∀i = 1, . . . ,N, and
∑N

i=1 vi(xxx) = 1, so that

min
j
{Gj} =

N∑
i=1

vi(xxx)min
j
{Gj} ≤

N∑
i=1

vi(xxx)Gi = Ĝ ≤
N∑

i=1
vi(xxx)

N∑
i=1

vi(xxx)max
j

{Gj} = max
j

{Gj}

since G ∈ {0, 1}, minj{Gj} = 0 and maxj{Gj} = 1: Ĝ ∈ [0, 1]
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Common RBFs
RBF: measure similarity based on distance d

• Gaussian: ϕ(ϵd) = e−(ϵd)2

– Most common
• Multiquadric RBF Kernel:

√
(1 + ϵd)2

– Less sensitive to the scale of the data compared to the Gaussian RBF
• Inverse multiquadric : ϕ(ϵd) = 1√

1+(ϵd)2

– Inverse of the multiquadric kernel, can handle data with large variations in feature values
• Inverse quadratic: ϕ(ϵd) = 1

1+(ϵd)2

– Similar to the inverse multiquadric, but without the square root, it can provide a steeper decay
– Default of C-GLISp

• Thin plate spline: ϕ(ϵd) = (ϵd)2 log(ϵd)
– Useful for interpolation problems, derived from the theory of thin plate splines
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Hyper-parameter selection for C-GLISp

• Case-dependent, but in general, it mainly depends on Nmax (resource limitation)

• In general, set δG,default = δE, with δS,default = 0.5 δG,default

• Solver default: δG,default = δE = 1, δS,default = 0.5, with Nmax = 50

• When Nmax increases, suggest to increase δE to promote exploration,

– e.g., if double Nmax, double δE

– Harder problem (prob. with multiple local optimizers), if larger Nmax is allowed, increase δE

• Another option: adaptively update δE similar to δG,default and δS,default, based on constraint
satisfaction (i.e., the value of the slack variable εh in (11))
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General procedures of surrogate-based opt. methods

1. Define the objective function to optimize (e.g., the performance of a simulation or a real-world
problem). It needs to provide the output based on an input decision vector, but it does not
necessarily require an explicit analytic expression.

2. Select a surrogate model to approximate the behavior of the objective function (e.g., Gaussian
processes, radial basis functions, etc..). One may select the model based on the prior knowledge
available and the characteristics of the problems (deterministic/stochastic).

3. Select an exploration model (e.g., space-filling methods, i.e., disperse points to promote a broad
coverage across the domain, probability of improvement, etc..). An appropriate exploration model
encourages exploration in unvisited feasible regions, aiming to decrease uncertainties in the
surrogate model and avoid getting stuck in local optima.

4. Generate an initial set of samples using some initial sampling strategies (e.g., Latin hypercube
sampling). For sample efficiency, it is important to ensure diversity and coverage across a wide
range of input space.

5. Evaluate the initial samples.
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General procedures of surrogate-based opt. methods - cont.

6. Build the surrogate model by training it with the initial samples and their corresponding function
evaluations.

7. Select the next sample to test by optimizing the acquisition function, which trades off between the
exploitation of the objective function predictions based on the surrogate model and the exploration
of the input space (prediction uncertainty/improvement/diversity) based on the exploration model.

8. Evaluate the objective function with the newly queried sample from step 7.

9. Update the surrogate model by incorporating the new sample and its function evaluation. The
predictability of the surrogate model is improved by iteratively updating the surrogate model
throughout the optimization procedure,

10. Repeat steps 7 to 9 until a stopping criterion is met (e.g., a maximum number of function
evaluations, a converge threshold, etc.).
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Surrogate-based optimization methods - General framework

Generate 
initial samples 

Black-box
simulation/experiment

fun. eval. Store the samples and their
corresponding fun. eval.

Select the initial
sample to query

Yes

Initial acquisition fun.
(Fit the initial surrogate and

exploration fun.)

No

YesGenerate the
next sample to

query

Optimize Return the
optimal
solution

YesNo

Optimize

No

Update the acquisition fun.
(Refit the surrogate and

exploration fun.)
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Automated driving case study details

MPC controller
• Let us describe the model in general nonlinear multi-input multi-output form

ẋ = f(x, u)
y = g(x, u),

• Linear time-varying (LTV) MPC strategy, with constant sampling time Ts:

x̃k+1 = Akx̃k + Bkũk

ỹk = Ckx̃k + Dkũk,

• At each sample t, compute the MPC action ut|t by solving a quadratic program (QP)

min
{ut+k|t}Nu−1

k=0
,ε

Np−1∑
k=0

∥∥yt+k|t − yref
t+k

∥∥2
Qy
+

Np−1∑
k=0

∥∥ut+k|t − uref
t+k

∥∥2
Qu
+

Np−1∑
k=0

∥∥∆ut+k|t
∥∥2

Q∆u
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Automated driving case study details - cont.

Discrete-time state-space model for the case study:

s̃k+1=

[
1 0 −v̄k sin(θ̄k+ψ̄k)Ts
0 1 v̄k cos(θ̄k+ψ̄k)Ts
0 0 1

]
s̃k+

[
cos(θ̄k+ψ̄k)Ts −v̄k sin(θ̄k+ψ̄k)Ts
sin(θ̄k+ψ̄k)Ts v̄k cos(θ̄k+ψ̄k)Ts

sin(ψ̄k)
L Ts

v̄k cos(ψ̄k)
L Ts

]
ũk

ỹk= s̃k,

• The subscript k denotes the value at time step k

• Nominal trajectory: s̄k = [x̄fk w̄fk θ̄k]
′, ūk = [v̄k ψ̄k]

′, and ȳk = s̄k

• Ṽar = Var − Var denotes the deviation from the nominal value
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Automated driving case study details - cont.

Real-time iteration (RTI) scheme (S. Gros, et al., 2020), (M. Diehl, et al., 2005):

• RTI exploits the fact that successive optimal control problems in NMPC are closely related,
allowing for iterative improvement of solutions ”on-the-fly”

• The RTI approach linearizes the system dynamics at the current state and control prediction ,
rather than the reference trajectory, and uses a numerical integration scheme for simulation

• This method achieves fast convergence by employing Newton-type optimization techniques,
ensuring the NMPC solution updates in real time with system dynamics

• RTI-based NMPC can be viewed as a special case of LTV MPC, where linearization occurs online
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PWAS



One-hot encoding

Categorical variable example:

Class One-hot encoding
A 001
B 010
C 100

Integer variable example:

Integer One-hot encoding
3 0001
4 0010
5 0100
6 1000

for integer in [3,6]
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PWAS - change of variables

Continuous variables:

• Rescale every continuous variable xi into a new variable x̄i ∈ [−1, 1] such that

xi =
ui

x − ℓi
x

2 x̄i +
ui

x + ℓi
x

2 , ∀i = 1, . . . , nc.

• Update the corresponding constraint matrices and right-hand-side vectors

• Possibly further tightened the intervals [−1, 1] by taking the updated inequality constraints (if
exist) into account
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PWAS - change of variables
Integer variables (assume only a finite number Nmax of queries can be made):

• Treat as categorical (
∏nint

i=1 nint
i < Nmax)

– One-hot encode integer variables into further dnint binary variables ȳj ∈ {0, 1}, j = 1, . . . , dnint , where
dnint =

∑nint
i=1 nint

i
– Update the relevant constraint matrices and right-hand-side vectors

• Treat as continuous (
∏nint

i=1 nint
i ≥ Nmax)

– Similar to continuous variables, rescale integer variable yi into a new variable ȳi ∈ [−1, 1] such that

yi =
ui

y − ℓi
y

2 ȳi +
ui

y + ℓi
y

2 .

– Update the corresponding constraint matrices and right-hand-side vectors
– Possibly further tightened the intervals [−1, 1] by taking the updated inequality constraints (if exist)

into account

Note: nint
i = bui

yc − dℓi
ye + 1 is the cardinality of the set [liy, ui

y] ∩ Z, , i.e., the number of integer values that
variable yi can take.
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Choice of K and initial sample size
Comment from Prof. Fabio Schoen:

Comment on how the choice of K and the initial sample size influence the overall performance in realistic
test cases

• For K, since we used PARC, where K is adaptively updated. It is less critical to assign a very precision
initial K. It is often a good practice to assign K = nX + 1. Also, K needs to be smaller than Ninit

• Ninit depends on the number of opt. var. and max. number of samples allowed

M. Zhu - PhD Thesis Defense - May 30, 2024 23/23


	Overview
	Preliminary
	Main contributions
	C-GLISp: Pref-based optimization with unknown constraints
	PWAS: Global and pref-based optimization with mixed variables using piecewise aﬃne surrogates
	Conclusion and discussions

	Appendix
	Complementary slides
	C-GLISp
	PWAS



