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 a b s t r a c t

Maintaining consistent product quality under uncertainty is essential for chemical industries, where minimising 
waste and meeting strict quality standards impacts overall performance. However, existing control strategies, 
relying on set-point control, often prove inefficient for large process uncertainties. Operational space control 
emerges as a promising solution, identifying reliable operational regions and enhancing process flexibility, which 
is particularly advantageous when achieving rigid control is challenging. This study presents a framework for 
extensively screening design spaces to identify optimal operational regions that satisfy quality constraints while 
accommodating various uncertainties prevalent in manufacturing settings. By integrating machine learning based 
clustering algorithms with dynamic optimisation within a real-world formulation process, the discovered op-
erational spaces were shown to be optimal, flexible and reliable, leading to reduced batch times and energy 
consumption. Overall, this work outlines operational space methods as a novel advancement in modern product 
quality control, paving the way for resilient and economically viable industrial process designs.

1.  Introduction

Product quality control is crucial for industries such as pharmaceuti-
cals, specialty chemicals, and formulations, where stringent regulations 
of product quality exist to ensure safety, reliability, and good economic 
performance (Hicks et al., 2021). Additionally, due to the current sus-
tainability drive, local and global governmental initiatives to reduce en-
vironmental impact have led to increasing demands and regulations be-
ing introduced; alongside rising operational costs, this has intensified 
the demand for tighter product quality control.

To remain competitive and combat increasing sustainability de-
mands, there is a pressing need to develop optimised process flow 
diagrams (PFD) that address inefficiencies, reduce waste (Amrih and 
Damayanti, 2022), and enhance operational flexibility (Hill, 2007). Al-
though the use of the term Process Flow Diagram (PFD) may vary 
in meaning across industrial sectors, we will be defining as is con-
ventionally accepted in the formulation industries. A PFD is a visual 
representation of a process that specifies key process state variables 
and their required set-points to ensure consistent and controlled op-
eration. Traditionally, manufacturing processes are operated and con-
trolled based on the rigid state profiles (i.e. a discrete specification 
of state variable set-points at different stages in the process) spec-
ified in the PFD determined through numerous experimental trials
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(Forbes et al., 2015; Efheij et al., 2019), which, whilst straightforward 
to implement and effective for stable operations, lacks the flexibility 
needed to manage uncertainties that may arise during process opera-
tion. Furthermore, as a consequence of its rigidity, set-point control of-
ten results in high energy consumption (Asad et al., 2017). Even in other 
classic set-point approaches that account for uncertainties through real-
time feedback control, large sensor networks with rapid data processing 
are required which can be expensive and impractical hence, accommo-
dation of uncertainties may be limited. If unaccounted for, or not appro-
priately accounted for, it may be experienced that these uncertainties 
directly lead to large deviations in the key performance indicator (KPI) 
and consequently, batch rejections, which is reported widely within the 
literature (Novaraa and Henning, 2018; Wan et al., 2012; Geletu et al., 
2013). Thus, there exists a clear need for more advanced and robust 
optimal control strategies to maintain product quality.

So far, an extensively applied approach for effectively handling un-
certainty is stochastic optimisation, which leverages probability distri-
butions to represent uncertainties, aligning closely with real-world pro-
cess variability (Zheng et al., 2014). Stochastic optimisation has seen 
use across a wide range of applications including complex, non-linear 
systems (Chen et al., 2023), where classical robust optimisation ap-
proaches, such as the use of interval uncertainty and ellipsoidal bounds 
often lead to overly conservative solutions and high computational costs 
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(Ben-Tal and Nemirovski, 2002; University, 2023). In practice, solving 
over the entire probability distribution is intractable so, techniques that 
aim to approximate the distribution, like Monte Carlo and scenario-
based methods, are employed (Homem-de Mello and Bayraksan, 2014). 
Scenario tree optimisation is a subset of stochastic optimisation that 
further refines decision-making by transforming complex probabilistic 
problems into manageable deterministic ones, using a tree of possible 
uncertainty scenarios (Silvente et al., 2019; Hill, 2007). In this man-
ner, uncertainties are propagated across the entire process, with multi-
ple different realisations of these uncertainties being considered. Each 
full trajectory (scenario) of the process is therefore defined by a unique 
combination of uncertainty realisations (nodes), of which many can be 
generated to describe the overall probability distribution (i.e. scenario 
tree).

In addition to scenario tree optimisation approaches, flexibility anal-
ysis is often used to examine the performance of a predefined PFD. Flex-
ibility analysis aims to identify the combination of the largest uncertain-
ties that can be accommodated by a feasible set of state profiles so that 
all specified constraints are satisfied (Lima et al., 2010; Wang et al., 
2016; Forster et al., 2024). Flexibility-based methods find a wide ar-
ray of applications throughout the literature, being especially promi-
nent within process engineering and reaction engineering. Many ex-
amples of which are found in Raspanti et al. (2000), where different 
flexibility approaches are compared for a multitude of process systems 
engineering case studies, taking note of the advantages and disadvan-
tages of each. Another example is seen in the work of Bremer et al. 
(2017), where the flexibility of different set-points was compared for 
dynamic hot spot control of a carbon dioxide methanation reactor un-
der the worst-case input feed conditions. In (Bremer and Sundmacher, 
2019), this study was extended to further improve operational flexibil-
ity by applying stabilising control to unstable operating points. While 
flexibility analysis can establish a reliable PFD that can account for dif-
ferent sources of uncertainty (Swaney and Grossmann, 1985), strictly 
following this PFD in real operations can be challenging. Moreover, it 
is usually the case that optimality of the PFD is overlooked in favour 
of its reliability hence, in many cases, it may be considered overly
conservative.

In the literature, both scenario tree and flexibility-based methods 
have been widely integrated into algorithms for determining optimal 
and reliable state set-points to combat uncertainties (Lucia et al., 2013) 
with reported success. Nonetheless, within the fine chemical and phar-
maceutical industries it is frequently the case that the product KPI is 
sensitive to the optimised set-points, hence even small disturbances to 
the set-points may result in product quality violations. In practice, it is 
highly challenging to prevent such disturbances from occurring due to 
the presence of significant feedstock variability, human error and system 
inconsistencies; this makes rigid adherence to the set-points infeasible, 
so batch rejections are likely to be observed (Gattu and Zafiriou, 1999). 
Furthermore, although the set-points may be optimal with respect to the 
KPI, little to no consideration is given to the excessive energy expendi-
ture necessary to operate sufficiently close to these predefined state pro-
files hence, such approaches are unfavourable for the current drive to-
wards sustainable and resource-efficient operations (Bruns et al., 2020). 
To improve upon traditional set-point based control approaches, it be-
comes necessary to extend the concept of flexibility from that of reliable 
set-points, to that of reliable operational spaces which provide greater 
flexibility to the manufacturing operation.

An operational space-based control strategy directly regulates con-
trol and state variables to achieve desired outcomes within a defined 
operational space, rather than focusing on individual system inputs or 
maintaining fixed set-points. It has found considerable use within the 
literature in the chemical and pharmaceutical sectors in recent years, 
where it is often referred to as design space identification, or as an ex-
tension to flexibility analysis. In the work of Forster et al. (2024), an 
operational space methodology was proposed to facilitate an extension 
to formal flexibility analysis and was proven effective for a case study 

pertaining to the temperature control of a fed-batch bioreactor produc-
ing ethanol subject to parameter uncertainties where the operational 
region ensured minimum ethanol concentration constraints were met. 
Another example is described in the work of Mortier et al. (2016) which 
focuses on a pharmaceutical freeze drying process that is known to in-
cur high costs and large energy consumption, primarily due to the need 
to achieve stability in the product (KPI). A dynamic operational space, 
robust to parameter uncertainties, was designed for shelf temperature 
and chamber pressure, resulting in better economic performance and 
lower drying times. Other pharmaceutical applications are compared 
and their limitations are discussed in Djuris and Djuric (2017), offer-
ing suggestions to integrate operational spaces with process analytical 
technology (PAT) measurements for improved control and monitoring 
of system state, uncertainty and KPI.

Despite the significant advantages operational space control has to 
offer, there remains certain limitations in current methods yet to be ad-
dressed. Several notable challenges include: (i) the consideration of un-
certainty is usually restricted to parameter uncertainty alone; (ii) opti-
mality of the space is overlooked, with focus instead being on the de-
sign of specific optimal set-points; (iii) the determination of operational 
spaces is frequently inefficient, largely relying on computationally ex-
pensive sampling techniques; (iv) and finally, there exists no work focus-
ing on the systematic identification of multiple spaces, which may exist 
for the control of a given process and might perform equally well. On 
top of these challenges, to the best of our knowledge, operational space 
methods have not been applied before into the formulation industries. 
However it is believed that the use of flexible operating spaces may pro-
vide significant advantages in bypassing major challenges within the 
sector, such as difficulties in implementing real-time product quality 
control and monitoring and precisely maintaining predefined state set-
points.

Therefore, in this paper, the innovation is twofold; firstly, we propose 
a novel scenario tree optimisation framework that integrates flexible op-
erational spaces with dynamic optimisation to achieve optimal perfor-
mance across the entire design space (i.e. identifying multiple optimal 
and flexible operational regions), paving the way for advancements in 
modern process product quality control. Secondly, we pioneer the first 
case study investigating the effectiveness of such technique in formu-
lation settings. The structure of the paper herein is ordered as follows. 
Sections 2 and 3 outline the operational space identification methodol-
ogy and formulation process case study. Section 4 provides a thorough 
discussion of the results, and finally, Section 5 provides a conclusion to 
the research findings.

2.  Methodology

Generally, we divide operational spaces into 3 classifications, that 
is: the feasible space, which is the multidimensional range of operating 
conditions that can satisfy process constraints; the flexible space, a sub-
set of the feasible space which is also robust to uncertainties; and the 
optimal space, another subset of the feasible space in which the pro-
cess is operated optimally for some pre-defined objective. In this study, 
we aim to propose a novel methodology for the characterisation of the 
intersect between the flexible and optimal spaces such that the discov-
ered solution space contains only solutions both optimal in operation 
and robust to uncertainties. Furthermore, since different optimal oper-
ating conditions may exist, we aim to isolate any distinct optimal oper-
ating regions within the identified design space. Each optimal operating 
region is characterised by a unique optimal state profile (or a set of 
optimal state profiles if there are multiple state variables) and its repre-
sentative bounds. In this paper, we adopt interval representation, where 
spaces are defined by optimal operating conditions bounded by upper 
and lower limits. It is then possible to rank the different operating re-
gions contingent to some preferred metrics and heuristics (e.g., whether 
one is easier to achieve or maintain in practice).
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Fig. 1. Proposed methodology for optimal space identification, terminated un-
der the criteria that the number of product quality violations observed is less 
than 𝜂.

The overall methodology can be summarised into 4 steps, which are 
shown in Fig. 1 and elaborated in the following subsections.

2.1.  General problem formulation

We assume the availability of a mathematical model to represent the 
dynamics of the process, where we divide the state variables into two 
categories: (i) 𝑥𝑥𝑥f lexible(𝑡) ∈ ℝ𝑛f lexible , with 𝑡 ∈ [0, 𝑡𝑓 ] represents a specific 
time point within the operational time horizon, denoting the vector of 
state variables whose values are flexible and can be directly regulated by 
the control inputs (e.g., maintain the temperature (a flexible state vari-
able) of a reactor by adjusting the coolant flowrate (a control input)); 
(ii) 𝑥𝑥𝑥dept (𝑡) ∈ ℝ𝑛dept , denoting the vector of dependent variables whose 
values can be influenced by 𝑥𝑥𝑥f lexible and control inputs but cannot be 
directly altered by the control inputs. For example, the concentration 
of a product (a dependent state variable) may increase when both the 
temperature (a flexible state variable) and the concentration of an inter-
mediate state (another dependent state variable) rise. However, unlike 
flexible state variables, it cannot be directly regulated through a control 
input. The dynamic model is expressed as follows: 
𝑥̇𝑥𝑥f lexible(𝑡) = 𝐹𝐹𝐹 f lexible(𝑡,𝑥𝑥𝑥f lexible(𝑡), 𝜃𝜃𝜃, 𝜉𝜉𝜉, 𝑢𝑢𝑢(𝑡))

𝑥̇𝑥𝑥dept (𝑡) = 𝐹𝐹𝐹 dept (𝑡,𝑥𝑥𝑥dept (𝑡), 𝑥𝑥𝑥f lexible(𝑡), 𝜃𝜃𝜃, 𝜉𝜉𝜉).
(1)

Here, 𝑢𝑢𝑢(𝑡) ∈ ℝ𝑚 is the vector of control variables; 𝜃𝜃𝜃 ∈ ℝ𝑝 is the vector 
of fixed parameters; and 𝜉𝜉𝜉 ∈ ℝ𝑟 denotes the vector of uncertain param-
eters. In this paper, we assume that each source of uncertainty, 𝜉𝑖, for 
𝑖 = 1,… , 𝑟, is modelled as a random variable with a distinct Gaussian 
distribution, i.e., 𝜉𝑖 ∼  (𝜇𝑖, 𝜎2𝑖 ), with 𝜇𝑖 represents the mean setted to 
the nominal value, while 𝜎𝑖 is the standard deviation that reflects the ex-
pected operational variability. Both parameters, 𝜇𝑖 and 𝜎𝑖, are assumed 

to be known in advance. The objective is to determine a flexible, opti-
mal, and practical operational space for 𝑥𝑥𝑥f lexible(𝑡), ensuring consistent 
satisfactory achievements of KPIs (e.g., product quality) and maximum 
process efficiency notwithstanding the uncertainties introduced by 𝜉𝜉𝜉. 
We note that hereinafter, operational space is used to denote the iden-
tified flexible state space of 𝑥𝑥𝑥f lexible(𝑡).

2.2.  Sampling uncertainty

We utilise scenario tree analysis, as discussed in Section 1 to cap-
ture the range of uncertainties that may arise during processing. The 
scenario tree is constructed by sampling each source of uncertainty, 𝜉𝑖, 
according to its respective distribution. In practice, there exist multiple 
ways in which a scenario tree may be structured; the two most generic 
representations being depicted in Fig. 2.

The scenario tree structure described in Fig. 2(a), is often referred 
to as a scenario fan (Xu et al., 2012), where the number of considered 
uncertainties is equal for all uncertainties, 𝜉1, 𝜉2, and 𝜉3. In contrast, an 
alternative branching scenario tree representation is shown in Fig. 2(b), 
where a different number of realisations is made for each of the uncer-
tainties. To sample across a large number of uncertain scenarios using 
the scenario fan can be inefficient, thus much work within the literature 
focuses on the conversion of scenario fans into branching scenario trees 
(Pranevicius and Sutiene, 2007; Chen and Yan, 2018) (see Fig. 2b), re-
ducing the number of scenarios that must be considered. Although useful 
in sparing computational expense, the use of branching scenario trees 
may introduce bias in how the uncertainties are represented, which of-
ten leads to a particular focus on sampling at the later stages, hence in 
this work we make use of the scenario fan structure to avoid any such as-
sumptions about the uncertainties. This is especially useful in the cases 
where the dimension of uncertain parameters is not large, as is the case 
for this work.

Accurately representing uncertainty is essential for achieving robust 
design, control and optimisation of a process. Therefore, in theory a 
sufficiently large number of samples should be drawn from each uncer-
tainty source. However, this consideration must be balanced against the 
increased computational load that accompanies a larger scenario tree 
particularly if the underlying process model is highly nonlinear and com-
plex. In practice, a compromise is often found between these two factors. 
Once the scenario tree is realised, all optimisation approaches are con-
ducted across the entire tree, ensuring that any defined constraints are 
upheld for each considered uncertainty realisation. In the event of high 
dimensional uncertainty spaces, one should consider the number of un-
certainty samples necessary to well represent the uncertainty space, the 
computational power of the available equipment any use of parallelisa-
tion, as well as the use of scenario reduction techniques to overcome the 
otherwise high computational expense.

2.3.  Identification of the optimal region

Since there can be multiple state profiles of 𝑥𝑥𝑥f lexible(𝑡) which can pro-
vide similar performance that satisfy the process constraints and main-
tain KPIs within specifications, in Step 2, as illustrated in Fig. 1, we 
focus on refining the broad process design space to identify promis-
ing operational regions that are likely to encompass the majority of 
high-performing state profiles of 𝑥𝑥𝑥f lexible(𝑡). Together, these will form the 
optimal operational region, if designed successfully (i.e., state profiles 
within the space will meet a predefined standard of process optimality 
while respecting process constraints for any uncertainties represented 
in the scenario tree). Specifically, for each set of high-performing state 
profiles, our aim is to minimise a process cost, 𝐶avg, which is averaged 
over the process cost of all the scenarios considered within the scenario 
tree, while maintaining the calculated KPI value within the specifica-
tions and close to the target value specified in the PFD. In practice, the 
chosen cost function is highly dependent on the requirements of indus-
try, particularly in how conservative they wish to be with respect to 
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Fig. 2. General representations of a scenario tree, with each realisation of uncertainty, 𝜉𝑖, where in (a), a scenario fan is shown, and in (b), a branching scenario tree 
is shown.

uncertainties. In this work, even though the average scenario cost may 
be overly conservative due to its equal weighting associated to each po-
tentially uncertain scenario, it is chosen to reflect the formulation indus-
tries requirements to accommodate large operational uncertainties. In 
other scenarios, where it is not desired to be overly conservative for the 
system at hand, then using alternative objectives such as the expected 
value may prove a better option.

The operational time horizon is discretised into 𝑁 intervals. To re-
duce the control efforts, we assume 𝑥𝑥𝑥f lexible(𝑡) is held constant within 
each interval (that is, piecewise constants), i.e., 𝑥𝑥𝑥f lexible(𝑡) = 𝑥𝑥𝑥f lexible𝑘 , for 
𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) and 𝑘 = 0… , 𝑁 − 1, where 𝑡𝑘 = 𝑘Δ𝑡 and Δ𝑡 = 𝑡𝑓

𝑁 . Also, due to 
physical limitations imposed on the control actions (i.e., 𝑢𝑢𝑢(𝑡)), 𝑥𝑥𝑥f lexible𝑘  are 
also bounded within the range of [𝑥𝑥𝑥f lexible𝑘 , 𝑥𝑥𝑥f lexible𝑘 ], for 𝑘 = 0,… , 𝑁 − 1. 
In other words, if the flexible states, 𝑥𝑥𝑥f lexible𝑘 , are assigned values within 
this range, it is possible to adjust the control inputs to reach these as-
signed values. The process can be subject to constraints, represented by 
𝑔𝑔𝑔(𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible𝑘 ), for 𝑠 = 1,… , 𝑆, where 𝑆 denotes the number of uncer-
tain scenarios in the realised scenario tree. Additionally, it is presumed 
that the initial states (𝑥𝑥𝑥dept0 ) are known.

We can define the optimisation problem as follows to identify the 
optimal state trajectories of 𝑥𝑥𝑥f lexible: 

min
𝑥𝑥𝑥f lexible𝑘

𝑘=0,…,𝑁−1

𝜆1 ⋅ obj1 + 𝜆2 ⋅ 𝐶avg

s.t. for 𝑘 = 0,… , 𝑁 − 1, 𝑠 = 1,… , 𝑆,

obj1 =
1
𝑆

𝑆
∑

𝑠=1
(𝑦KPI,𝑠 − 𝑦KPI,T)2

𝐶avg =
1
𝑆

𝑆
∑

𝑠=1
𝐶𝑠

𝑦KPI,𝑠 = ℎ
(

𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible𝑘
)

𝑥𝑥𝑥dept𝑘+1,𝑠 = 𝑓𝑓𝑓 dept
(

Δ𝑡,𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible𝑘 , 𝜃𝜃𝜃, 𝜉𝜉𝜉𝑠
)

𝑔𝑔𝑔
(

𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible𝑘
)

≤ 0

𝑥𝑥𝑥dept0 = 𝑥𝑥𝑥dept (0)

𝑥𝑥𝑥f lexible𝑘 ≤ 𝑥𝑥𝑥f lexible𝑘 ≤ 𝑥𝑥𝑥f lexible𝑘 , 𝑦
KPI

≤ 𝑦KPI,s ≤ 𝑦KPI,

(2)

where 𝜆1 and 𝜆2 are weighting parameters for each objective; obj1 is the 
average sum-of-squared deviations from KPIs across all the scenarios; 

and 𝐶𝑠 is the process cost of each scenario. ℎ(⋅) is the functional trans-
formation between the process states and the KPIs, with 𝑦KPI,𝑠 and 𝑦KPI,T
being the resulting KPI value for Scenario 𝑠 and the target KPI value, 
respectively. 𝑓𝑓𝑓 dept (⋅) represents the numerical integration of the depen-
dent states. And 𝑔𝑔𝑔(⋅) constitutes the process inequality constraints (note, 
equality constraints can be represented as two inequality constraints).

To identify a diverse set of high-performing state trajectories and ex-
plore a wide potential operational space, once the initial optimisation 
of Problem (2) is complete, new high-performing state profiles can be 
determined by re-optimising Problem (2) with an added penalty func-
tion, 𝑝, in the objective function (i.e., 𝜆1 ⋅ obj1 + 𝜆2 ⋅ 𝐶avg + 𝑝). The added 
penalty aims to maximise differences between existing and new state 
trajectories. This penalty may take the form: 

𝑝 = 𝜆3 ⋅
𝐷curr
∑

𝑑=1

𝑛f lexible
∑

𝑗=1

𝑁−1
∑

𝑘=0

(

𝑥f lexible𝑗,𝑘 − 𝑥∗f lexible𝑗,𝑘,𝑑
)

Δ𝑥f lexible𝑗,𝑘
, (3)

where 𝜆3 is the weighting parameter to control the penalty function’s 
strength, with larger values promoting greater diversity among solu-
tions and, thus, more distinct optimal regions. 𝐷curr is the number of 
previous iterations. Here, 𝑥∗f lexible𝑗,𝑘,𝑑 represents the discretised optimal 
state value from an identified state trajectory, whilst 𝑥f lexible𝑗,𝑘 is the 
state value in the current optimisation. Δ𝑥f lexible𝑗,𝑘 denotes the maxi-
mum range of 𝑥f lexible𝑗,𝑘 across identified trajectories, normalising the 
values to account for state variables across different scales.

In the application of this approach, and with a sufficient number of 
iterations, 𝐷max, one can screen the entire design space to identify a 
large number of high-performing state profiles that satisfy all feasibility 
constraints under uncertainty. However, due to the inherent complexity 
of the dynamic optimisation problem, in practice the user must decide 
on the number of iterations to perform. A smaller number of iterations 
may yield only a limited set of high-performing state profiles, while a 
larger number could become prohibitively computationally expensive.

2.4.  Clustering the identified optimal regions

After completing Step 2 (see Fig. 1), clustering algorithms are em-
ployed to group the high-performing state profiles into different regions, 
each one representing a potential optimal operational space. Clustering 
algorithms, which use unsupervised machine learning, are designed to 
handle clusters of varying densities and shapes. To ensure reliable re-
sults, it is essential to validate and analyse the identified clusters across 
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multiple algorithms, focusing on their characteristics and differences in 
relation to the features of high-performing state profiles that fall within 
each cluster (Anand and Kumar, 2022). In this study, several machine 
learning clustering algorithms, including: k-means (Na et al., 2010), DB-
SCAN (density-based spatial clustering of applications with noise) (Khan 
et al., 2014), and spectral clustering (Jia et al., 2014), were utilised and 
compared to ensure the consistency of the recommended number of clus-
ters.

The k-means algorithm is an extensively used simple and effective 
technique, the objective of which is to minimise the summed distance 
between the cluster centres and any available data points (Na et al., 
2010) for a given number of clusters, thus determining their optimal 
positions. As one of the most popular algorithms, k-means has found 
broad application, from categorisation of crude oils based on their phys-
iochemical properties (Sancho et al., 2022), to separation of waste wa-
ter treatment data into different regions for improved modelling of the 
chemical oxygen demand (Ay and Kisi, 2014). For a more detailed expla-
nation of the algorithm, interested readers are referred to Ikotun et al. 
(2023).

The second algorithm used was DBSCAN, which is a density-based 
method designed to cluster data points through density-based connec-
tivity analysis (Khan et al., 2014). A cluster is formed if there are enough 
points within a neighbourhood of a given radius, and this algorithm is 
particularly effective at handling irregular shapes and outliers. Addition-
ally, DBSCAN is able to suggest the optimal number of clusters, which 
is not possible using k-means or spectral clustering. Due to these ad-
vantages, DBSCAN is commonly applied to complex systems such as in 
Rovira et al. (2022), where it is used to distinguish different regions of a 
reactor using a lower dimensional representation of key input variables. 
Another examples is provided in Lörzing et al. (2024), where DBSCAN 
is used to identify anisotropic clusters for discovery of underlying struc-
tural organisation in cells. Interested readers are directed to Bushra and 
Yi (2021) for further description of the algorithm.

The final algorithm compared was spectral clustering, which is an-
other promising technique for describing clusters not well-separated and 
with complex shapes (Rodriguez et al., 2019). This technique depends 
on the construction of an affinity matrix to determine the similarity be-
tween two data points, for which the eigenvalues and eigenvectors can 
be used to divide the data into different clusters. In the literature spec-
tral clustering is typically used for systems with complex relations such 
as in Lin et al. (2021), for which different molecular junction confor-
mations are analysed in vast quantities of junction break data to fully 
explore the information hidden in largely unexplored datasets. A further 
application is shown in Fujiwara et al. (2011) for process monitoring of 
manufacturing processes by clustering data of similar production de-
vices, removing the need for statistical modelling of each process. For a 
more comprehensive explanation of the algorithm, readers are referred 
to Von Luxburg (2007).

Overall, in this work, the use of k-means, DBSCAN and spectral clus-
tering together allows us to cover a wide range of possible cluster prop-
erties, with each method accounting for potential drawbacks of the rest.

2.5.  Establishing nominal state profiles and bounds

In Steps 2 and 3 of Fig. 1, approximations for some number of unique 
optimal operational regions are established. At this stage, we need to re-
fine these regions by determining the nominal state profiles for each of 
these regions along with their corresponding lower and upper bounds 
for each flexible state variable. In other words, an optimal operational 
region for a specific flexible state variable is defined by its nominal pro-
file and associated upper and lower bounds, such that remaining within 
these bounds ensures feasibility under the considered uncertainties.

The nominal profiles (i.e. optimised state variable set-points at dif-
ferent stages in the process) for the flexible states are identified with 
a dynamic optimisation formulation outlined in Problem (2), with the 
search space now confined to the clustered region identified in Step 3 

(see Fig. 1). This ensures that the solution lies within the appropriate 
cluster; thus, 𝑥𝑥𝑥f lexible𝑘  and 𝑥𝑥𝑥f lexible𝑘  in Problem (2) are altered to represent 
the characteristics of the cluster (i.e. specific lower and upper bound 
of the cluster). Upon obtaining the nominal profiles, we propose a two-
step algorithm to independently find the corresponding upper and lower 
bounds by maximising the distance between them while continuing to 
meet process constraints. The optimisation strategy for finding the lower 
bound is shown in Eq. (4): 

max
𝑥𝑥𝑥f lexible,lb𝑘

𝑘=0,…,𝑁−1

𝑛f lexible
min
𝑗=1

𝑁−1
min
𝑘=0

𝑤𝑗,𝑘 ⋅
(

𝑥f lexible,nominal
𝑗,𝑘 − 𝑥f lexible,lb𝑗,𝑘

)

s.t. for 𝑘 = 0,… , 𝑁 − 1, 𝑠 = 1,… , 𝑆,

𝑤𝑗,𝑘 = 1
𝑥f lexible,nominal
𝑗,𝑘 − 𝑥f lexible𝑗,𝑘

𝑦KPI,𝑠 = ℎ
(

𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible𝑘
)

𝑥𝑥𝑥dept𝑘+1,𝑠 = 𝑓𝑓𝑓 dept
(

Δ𝑡,𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible,lb𝑘 , 𝜃𝜃𝜃, 𝜉𝜉𝜉𝑠
)

𝑔𝑔𝑔
(

𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible,lb𝑘
)

≤ 0

𝑥𝑥𝑥dept0 = 𝑥𝑥𝑥dept (0)

𝑥𝑥𝑥f lexible𝑘 ≤ 𝑥𝑥𝑥f lexible,lb𝑘 ≤ 𝑥𝑥𝑥f lexible,nominal
𝑘 , 𝑦

KPI
≤ 𝑦KPI,𝑠 ≤ 𝑦KPI,

(4)

where Problem (4) aims to maximise the minimum distance between 
the nominal flexible state, 𝑥f lexible,nominal

𝑗,𝑘  and the lower bound of flex-
ible state, 𝑥f lexible,lb𝑗,𝑘 , across all flexible states variables and timesteps. 
The normalisation parameter, 𝑤𝑗,𝑘, normalises the contribution of dif-
ferent flexible states to the objective function. By designing the objec-
tive function to maximise the minimum distance between 𝑥𝑥𝑥f lexible,nominal

𝑘
and 𝑥𝑥𝑥f lexible,lb𝑘 , we aim to distribute the bounds as evenly as is attainable 
across the full trajectory for each flexible state variable, reducing the 
likelihood of requiring precise set-point control at any single time-step.

The upper bounds (𝑥𝑥𝑥f lexible,ub𝑘 ) are derived using a similar approach, 
as follows: 

max
𝑥𝑥𝑥f lexible,ub𝑘
𝑘=0,…,𝑁−1

𝑛f lexible
min
𝑗=1

𝑁−1
min
𝑘=0

𝑤𝑗,𝑘 ⋅
(

𝑥f lexible,ub𝑗,𝑘 − 𝑥f lexible,nominal
𝑗,𝑘

)

s.t. for 𝑘 = 0,… , 𝑁 − 1, 𝑠 = 1,… , 𝑆,

𝑤𝑗,𝑘 = 1
𝑥f lexible𝑗,𝑘 − 𝑥f lexible,nominal

𝑗,𝑘

𝑦KPI,𝑠 = ℎ
(

𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible𝑘
)

𝑥𝑥𝑥dept𝑘+1,𝑠 = 𝑓𝑓𝑓 dept
(

Δ𝑡,𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible,ub𝑘 , 𝜃𝜃𝜃, 𝜉𝜉𝜉𝑠
)

𝑔𝑔𝑔
(

𝑥𝑥𝑥dept𝑘,𝑠 , 𝑥𝑥𝑥f lexible,ub𝑘
)

≤ 0

𝑥𝑥𝑥dept0 = 𝑥𝑥𝑥dept (0)

𝑥𝑥𝑥f lexible,nominal
𝑘 ≤ 𝑥𝑥𝑥f lexible,ub𝑘 ≤ 𝑥𝑥𝑥f lexible𝑘 , 𝑦

KPI
≤ 𝑦KPI,s ≤ 𝑦KPI.

(5)

This two-step algorithm produces upper and lower bounds that account 
for uncertainties whilst simultaneously respecting process constraints, 
providing an optimal operational region for which one may relax control 
of the design variables whilst achieving desired process performance 
and meeting desired product quality specifications. Although the process 
optimal performance target (process cost) is not explicitly considered in 
Eqs. (4) and (5), the use of 𝑥𝑥𝑥f lexible𝑘  and 𝑥𝑥𝑥f lexible𝑘  identified for each cluster 
allows for a high probability that the process still operates close to its 
optimal performance.

As this two-step algorithm independently determines the upper and 
lower bounds, each is guaranteed to comply with constraints individu-
ally. Nevertheless, it is not ensured that all state profiles sampled within 
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these bounds will also act accordingly. Consequently, it becomes essen-
tial that these bounds are validated by randomly sampling state pro-
files between them and recording instances that violate constraints. The 
recorded samples are then reintroduced into the framework through im-
plementing a penalty function in the objective function of Eq. (4) and 
Eq. (5), effectively narrowing the bounds so that violating state profiles 
are unable to be sampled. The penalty function, 𝑞, is defined as follows: 

𝑞 =
𝑐𝑣
∑

𝑧=1
𝑄𝑧, with 𝑄𝑧 =

{

1 if ∀𝑘 ∶ 𝑥𝑥𝑥f lexible,lb𝑘 ≤ 𝑥𝑥𝑥f lexible𝑘,𝑧 ≤ 𝑥𝑥𝑥f lexible,ub𝑘
0 Otherwise,

(6)

where 𝑐𝑣 is the total number of recorded constraint-violating state pro-
files (𝑥𝑥𝑥f lexible𝑘,𝑧 ) from the recordings made in the validation step; and 𝑄𝑧

is the penalisation parameter, which equals 1 if 𝑥𝑥𝑥f lexible𝑘,𝑧  can be sampled 
from the identified region, and 0 if not. As shown in Fig. 1, the process 
is terminated once the violation rate of the validation set is less than or 
equal to a specific threshold, 𝜂. In reality, considering interdependence 
between operational variables may expand the discovered operational 
spaces, however taking such relationships into account on an industrial 
process could cause practical decision making to become convoluted for 
operators to achieve and maintain. Therefore, this is not taken into ac-
count in this work, instead favouring the two step dynamic optimisation 
followed by subsequent refinements of the bounds.

The formulation of the penalty described in Eq. (6) is advantageous 
as it is an effective brute force approach to ensure improvements in the 
violation rates observed when sampling within the optimal operational 
region, and is generalisable across other systems. However, the specific 
formulation shown may risk overly conservative reductions in bound 
areas hence, for simpler systems it may be preferred to make use of 
a more elegant penalty function or directly reoptimise the identified 
bounds over the problematic uncertain scenarios. In practice, therefore, 
one should consider a trade-off between practicality of the solution, and 
its conservativeness.

3.  Case study

To demonstrate the proposed framework described in Sec-
tions 2.2–2.5, an in-silico case study was developed based on a dynamic 
model constructed to simulate a real industrial formulation process, for 
which a simplified schematic of the main mixing unit is shown in Fig. 3. 
The case study involves a multiphase non-Newtonian liquid product for-
mulation, produced through a batch mixing process in which the PFD 
is defined via a series of ingredient additions made by process opera-
tors, alongside a set of processing conditions such as temperature and 
shear rate. The product KPI is difficult to control due to the complexity 
of the multiphase mixing mechanisms and cannot be measured online. 
Therefore, identifying a suitable operational space to guarantee process 
flexibility and product quality is of critical importance.

Typically, the state variables one has access to in order to achieve 
these objectives are restricted by existing plant operations and proce-
dures. In this study, the sequence of ingredient additions is predeter-
mined by the established procedure, as is the final ingredient ratio and 
mass. Therefore, the types of flexible state variables are selected from 
standard processing variables, such as shear rate, pressure, temperature, 
and flowrate. In this case, we select two of such variable types (process 
parameters), and an additional one referring to the timing of ingredient 
additions, resulting in a total of 3 types of flexible state variables.

Recently, a mechanistic model has been constructed to simulate the 
formulation process (Rogers et al., 2024), and the model was validated 
to have high accuracy over different process scales. The model proposed 
by Rogers et al. (2024) simplifies the liquid product’s multiphase struc-
ture, describing it through a set of key material transformations and in-
teractions within the formulation, with ingredient concentrations serv-
ing as dependent state variables in the model. A full description of the 
model’s dynamics and the system under study is found in Rogers et al. 

(2024), and the model equations are depicted in Eq. (7), 
d𝑋1(𝑡)
d𝑡

= −5𝑟1(𝑡) − 10𝑟3(𝑡)

d𝑋2(𝑡)
d𝑡

= −2𝑟1(𝑡)

d𝑋3(𝑡)
d𝑡

= 𝑟1(𝑡) − 𝑟3(𝑡) − 3𝑟2(𝑡)

d𝑋4(𝑡)
d𝑡

= 𝑟2(𝑡)

d𝑋5(𝑡)
d𝑡

= 𝑟3(𝑡)

with

𝑟1(𝑡) = 𝑎1 ⋅𝑋6(𝑡) ⋅ (𝑐1 −𝑋7(𝑡)) ⋅𝑋1(𝑡) ⋅𝑋2(𝑡)

𝑟2(𝑡) = 𝑎2 ⋅𝑋6(𝑡) ⋅
(

𝑋3(𝑡) −
𝑋4(𝑡)

𝑏2 ⋅𝑋6(𝑡) ⋅ (𝑋7(𝑡) − 𝑐2) + 𝑑

)

𝑟3(𝑡) = 𝑎3 ⋅𝑋6(𝑡) ⋅
(

𝑋3(𝑡) ⋅𝑋1(𝑡) −
𝑋5(𝑡) ⋅𝑋7(𝑡)

𝑏3

)

.

(7)

For this case study, 𝑥𝑥𝑥dept (𝑡) = [𝑋1(𝑡),… , 𝑋5(𝑡)]𝑇  depicts a vector of 
5 dependent process states (ingredient concentrations) described by 
the 3 material transformations (𝑟1(𝑡), 𝑟2(𝑡), and 𝑟3(𝑡)) through time, 𝑡; 
𝑥𝑥𝑥f lexible(𝑡) = [𝑋6(𝑡), 𝑋7(𝑡), 𝑇add(𝑡)]𝑇  refers to 3 flexible state variables that 
can be directly regulated by their respective control actions, where 
𝑇add(𝑡) is a variable used to determine the time at which each ingre-
dient is added into the process. Here, 𝑎𝑎𝑎, 𝑏𝑏𝑏 and 𝑑 are constant parame-
ters determined through parameter estimation; and 𝑐𝑐𝑐 represents physi-
cal constants with known values. As shown in Eq. 7, 𝑥𝑥𝑥f lexible can directly 
influence 𝑥𝑥𝑥dept (i.e. ingredient concentrations), and can be directly reg-
ulated by the control inputs; thus their state profiles are specified in a 
PFD. Additionally, 𝑦KPI (an important product quality indicator) can be 
dynamically predicted as follows: 
𝑦KPI = ℎ(𝑥𝑥𝑥dept (𝑡𝑓 )) = (𝑥𝑥𝑥dept (𝑡𝑓 ))⊤𝐴𝐴𝐴 𝑥𝑥𝑥dept (𝑡𝑓 ) + 𝛽𝛽𝛽⊤𝑥𝑥𝑥dept (𝑡𝑓 ) + 𝛾, (8)

where 𝑥𝑥𝑥dept (𝑡𝑓 ) is the value of 𝑥𝑥𝑥dept at the end of the operational time, 𝑡𝑓 ; 
𝐴𝐴𝐴 and 𝛽𝛽𝛽 denote the matrix coefficients for the quadratic terms, and vec-
tor of coefficients for the linear terms, respectively; and 𝛾 is a constant 
parameter. In total, there exists 14 model parameters which were pa-
rameterised to describe the dynamics of batch operations. In this work, 
each of the flexible state variables are then discretised into 5 decision 
variables, each accounting for a specific mixing stage defined by the 5 
ingredient additions, and thus are piecewise constant over the entire 
batch time, as noted in Section 2.3 (i.e., 15 total decision variables). 
Hereinafter, the design space in this work consists of 15 dimensions, 
and the discretised model will be used to simulate the process response 
to different state profiles, providing a case study for evaluating the ef-
fectiveness of the proposed operational space identification method for 
complex, non-linear, dynamic systems. Hereafter, we will refer to the 
three flexible state variables as Process Parameter 1, 2 and 3.

In this study, the primary objective is to robustify the process to 
uncertainties such that the end batch quality is maintained within an 
optimal specification range (± 10%) from the desired value, 𝑦KPI,T). On 
top of this, a secondary objective is introduced to minimise the batch 
cycle time 𝑡𝑓 , so that process economics are enhanced, and process sus-
tainability is improved though reducing energy expenditure; this defines 
the cost, 𝐶avg, in Eq. (2).

The accurate representation of process uncertainties is critical to de-
riving the optimal operational space. If one overestimates expected pro-
cess variations, then the operational regions identified in Section 2.5 will 
be overly conservative; conversely, if underestimated, then the regions 
found will not be robust to uncertainties in practice, leading to exces-
sive end product quality violations. Therefore, to discover the sources of 
process uncertainty, and their typical distributions, historical data must 
be thoroughly examined. In this work, three main sources of uncertainty 
were observed and realised using 14 uncertain model parameters, and 
15 uncertain decision variables. The first source is variability in compo-
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Fig. 3. Simplified representation of the batch mixing equipment used (a), and four simulated KPI profiles obtained using the system model (b) (Rogers et al., 2024).

sition of the input feed, which is reflected in the estimated parameters 
of the model proposed by Rogers et al. (2024). The second source of 
uncertainty is identified as human error, primarily introduced into the 
system through challenges in precisely following the timing for ingredi-
ent additions as indicated by the plant process flow diagram. The final 
source of uncertainty is system inconsistencies, referring to deviations 
of the state values from their designated set-points. The uncertainty lev-
els assumed for the three sources are 10%, 20%, and 5% per standard 
deviation, respectively, based on the historical data. Exceptions were 
made, however, for three model parameters, being 𝑏3 and two of the 
matrix coefficients in matrix, 𝐴𝐴𝐴, which were all found to be much less 
effected by feedstock variability so were assigned an uncertainty level 
of 3% per standard deviation.

We note that all optimisation strategies in this paper were completed 
in Python 3.10.9 using Scipy v1.10.0’s differential evolutionary algo-
rithm, with Scipy’s solve_ivp integration function using the LSODA nu-
merical integrator. Mathematical operations and data formatting were 
completed using NumPy v1.23.5, Pandas v1.5.3, Matplotlib v3.7.0 and 
seaborn v0.12.2. The computer specifications used in this study were: 
Intel core i7-13700H 13th Gen @ 2.40GHz, 32GB of RAM.

4.  Results and discussion

4.1.  Results of initial design space screening

In this study, the first two steps of the proposed framework aim to 
efficiently screen the entire design space to identify potential optimal 
operational regions. These identified regions are then thoroughly exam-
ined, refined, and validated in Steps 3 and 4 (in Fig. 1). To balance com-
putational cost and facilitate rapid screening, the scenario tree is kept 
moderately sized, requiring only a small set of initial high-performing 
state profiles strategically distributed across the entire design space to 
ensure diversity. Consequently, 100 uncertain scenarios were generated 
to construct the scenario tree by considering all types of uncertainties, 
and 40 initial high-performing state profiles were determined using the 
dynamic optimisation framework described in Section 2.3 with 15 de-
cision variables, each of which ensured tight regulation over product 
quality and sought to minimise batch cycle time. Although 40 high-
performing state trajectories may seem sparse, the specific optimisa-
tion problem implemented aims to maximise the distance between each 
high-performing trajectory, thus allowing for a small number of high-
performing solutions to sufficiently search and accurately determine the 
operational space. On top of this, as more iterations are completed, one 
would expect the computational cost to increase due to an increased 
complexity of the problem introduced by the penalty term in Eq. (3). 

Table 1 
Normalised absolute values for the optimised decision variable’s 
mean, 𝜇, and standard deviation, 𝜎, (across all high-performing state 
profiles) for Process Parameters 1, 2 and 3.

Decision
variable

Normalised 
mean

Normalised 
standard
deviation

 Process Parameter 1 1 0.522 0.433
2 0.553 0.353
3 0.520 0.385
4 0.512 0.365
5 0.403 0.371

 Process Parameter 2 6 0.662 0.330
7 0.608 0.342
8 0.613 0.248
9 0.727 0.192
10 0.741 0.202

 Process Parameter 3 11 0.100 0.008
12 0.084 0.006
13 0.084 0.007
14 0.099 0.007
15 0.084 0.006

Hence, there exists a compromise between further exploring the opti-
mal space and the computational cost this entails.

To evaluate if the dynamic optimisation framework designed in Sec-
tion 2.3 was able to generate a wide array of high-performing solutions 
spanning the entire range of the total design space, the normalised mean 
value and standard deviation of each decision variable is summarised in 
Table 1. From Table 1, it is clear that the objective of the optimisation 
strategy in Section 2.3 to determine a range of diverse high-performance 
solutions has been achieved for all the 10 decision variables which rep-
resent the process operating conditions at different mixing phases. In 
contrast, the 5 decision variables associated with ingredient addition 
times exhibited consistency across different high-performing state pro-
files, typically converging toward their lower bounds. This trend can 
be attributed to the direct correlation between these decision variables 
and the batch cycle time. In industrial practice, mixing periods are often 
extended beyond necessity as a conservative measure. However, in the 
optimisation problem focused in this work, these durations were min-
imised, in line with the objective defined by Eq. (2).

4.2.  Results of optimal operational space clustering

Since it was found that the ingredient addition times were similar 
across all the high-performing state profiles, they were fixed at their 
lower bounds and thus the operational space is reduced from 15 to 10 
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Fig. 4. Results of the clustering analysis showing the two identified clusters in a reduced 3 dimensional (a), and 2 dimensional (b) PCA space.

dimensions. The clustering stage was therefore completed based on the 
10 decision variables (relating to process operating conditions at differ-
ent mixing phases) alone. When the three different clustering algorithms 
were used, a range of optimal clusters were suggested via a sensitivity 
analyses making use of the silhouette method; with k-means and spec-
tral clustering both suggesting two, and there being negligible difference 
between using two or three with DBSCAN.

In order to ascertain whether the third cluster provided any addi-
tional benefit, the silhouette method (Celebi and Aydin, 2016) was em-
ployed. In general, the silhouette method provides a measure of how 
close the data-points in a specific cluster are to each other, relative to 
the data points in other clusters. In this manner, it is possible to under-
stand whether each of the clusters is uniquely well representative of the 
data points belonging to it. Specifically, a score of −1 is assigned to data 
points for which are poorly clustered, and a score of 1 is assigned to 
those that are well clustered; these scores can then be averaged over all 
data points to provide an overall assessment of the clustering. The av-
erage silhouette scores obtained using two and three clusters were 0.25 
and 0.24, respectively, which advises that the third cluster provides no 
additional benefit, so the optimal number is two. Hence, two clusters 
were deemed appropriate, each of which corresponding to two distinct 
subregions within the approximated optimal space. Fig. 4 shows the two 
subregions via a reduced principal component (PCA) space; however, 
the clustering itself was not determined using the principal components, 
PCA was used solely for visualisation purposes.

Upon investigation of the two clusters seen in Fig. 4, it was found that 
a major behavioural difference was observed regarding the patterns of 
a specific process parameter (flexible state variable) that is changed at 
each mixing stage (represented by 5 decision variables). More specif-
ically, in Cluster 2, a high value of this process parameter is always 
maintained across the initial timesteps of the process, whereas Cluster 
1 is characterised by a large decrease of this process parameter at the 
beginning of the process. Given that the investigation of the subregions 
yielded distinguishable patterns for each, this evidences that there are 
indeed two separate optimal operational regions. As a result, proceeding 
with the two subregions individually is appropriate.

4.3.  Results of optimal operational space refinement

Finally, to refine the two optimal operational regions, it is essential to 
identify the nominal state profiles and establish the corresponding lower 
and upper bounds for each decision variable within the two subregions. 

Thus, the optimisation problem in Eq. (2) was adopted to identify the 
nominal state profiles as described in Section 2.5. Fig. 5 shows a com-
parison of estimated nominal trajectories of the two optimal regions for 
the 10 decision variables.

From Fig. 5, we can observe distinctly different state pathways of-
fered by each subregions’ nominal trajectories. This is particularly no-
ticeable at the beginning of the batch where Subregion 1 is characterised 
by a low magnitude of Process Parameter 2 for which is compensated by 
a large value in Process Parameter 1; the opposite to that which is seen 
in Subregion 2. Each of these state pathways, when validated on 100 
previously unseen randomly sampled uncertainties, boasted a violation 
rate of 0% with respect to the batch quality specifications. This directly 
indicates the superior performance of these nominal state profiles and 
suggests the effectiveness of the currently proposed methodology.

Subsequently, bound estimation was carried out as described in Sec-
tion 2.5 to refine the boundary of each optimal operational region and 
the result is shown in Fig. 6. By comparing with the two subregions, a 
major difference is observed in each region via the trade-off between 
the size of the operable spaces for the two process parameters. Specif-
ically, Optimal Region 1 incorporates a 44.9% decrease in its size of 
Process Parameter 1’s operable space when compared to Optimal Re-
gion 2 but compensates for this loss by yielding an increase of 42.2% 
in the operable space for Process Parameter 2. Crucially, it is possible 
to provide a ranking of which optimal operational region is preferred 
based on whether the manufacturing site has access to better control of 
Process Parameter 1 or 2 (i.e., the flexible state variables) via the avail-
able control inputs on site; where Optimal Region 2 would be preferred 
for the latter, and Optimal Region 1 would be preferred for the former.

As mentioned in Section 2.5, it is necessary to validate the identified 
operational regions by sampling a sufficient number of random state 
profiles between the upper and lower bounds and observing instances 
that violate end product quality constraints (i.e., ±10% from the KPI 
target, 𝑦KPI,T). In this study, we generated 1000 random sets of state 
profiles within each optimal operational region which were then tested 
using 100 unseen uncertain scenarios (i.e. 105 tests in total). In order to 
use these violating instances to compare the performance of the differ-
ent optimal operational regions, we define the batch failure rate. If one 
considers that every one of the 105 tests represents a simulated batch in 
full (subject to different uncertainties) then, the probability of a batch 
failing, 𝑃failure = 𝑃 (𝑦KPI,s > 1.1 ⋅ 𝑦KPI,T) ∪ 𝑃 (𝑦KPI,s < 0.9 ⋅ 𝑦KPI,T), is simply 
the fraction of these simulated batches that encountered a product qual-
ity violation. From this, Optimal Regions 1 and 2 were determined to 
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Fig. 5. Normalised nominal state trajectories for Process Parameter 1 (a) and 2 (b), for the two subregions identified.

Fig. 6. Normalised state trajectories and bounds of Subregions 1 and 2, for Process Parameter 1 (a) and Process Parameter 2 (b).

possess batch failure rates of 0.9% and 0.1%, respectively. From further 
analysis of the violating instances, it is found that, out of the 100 un-
seen scenarios, the maximum number that a specific set of state profiles 
violated constraints for was 10 and 3, with the averages being 4.3 and 
1.5 scenarios for Optimal Regions 1 and 2, respectively. Furthermore, 
out of these violating batches, the maximum and average percentage 
change from the desired product quality value was 41% and 15.8% for 
Optimal Region 1, and 47% and 16.1% for Optimal Region 2.

Therefore, the effectiveness of the methodology is shown without 
any additional refinements of the bounds. Even though the probability of 
batch failure is low and may be acceptable for specific applications, par-
ticularly if one favours a larger operational region, in this study, we aim 
to achieve both optimal and flexible operational regions within which, 
most sampled sets of state trajectories are entirely robust to uncertain-
ties. Hence, a tolerance is defined for a sampled trajectory failure rate, 
that is, the fraction of the 1000 randomly sampled sets of state profiles 
that experience any product quality violations when the 100 uncertain 
batches are simulated for it. Here, we aim to reduce the sampled tra-
jectory failure rates of each optimal operational region below 1%. This 
means refinement of the bounds is necessary for both optimal opera-
tional regions.

In order to further refine the operational regions, the penalty de-
scribed in Eq. (6) in Section 2.5 was employed. Fig. 7 shows the refined 
operational bounds for both subregions, each after two iterations of re-
fining the bounds. From Fig. 7, it can be seen that the operational region 
associated with the second subregion is of much greater area compared 

to the first region’s operational region. To be precise, the decrease in 
area of the operational bounds for Subregions 1 and 2 between Figs. 6 
and 7 was 51.3% and 24.6% for Process Parameter 1, and 78.9% and 
39.4% for Process Parameter 2, respectively. Moreover, a direct com-
parison of refined bound areas between Subregions 1 and 2 reveals that 
the operational bounds of Subregion 1 are 67.1% and 59.2% smaller 
than those of Subregion 2, for Process Parameters 1 and 2, respectively. 
Using the same random state trajectory and uncertainty sampling ap-
proach as described earlier (105 simulated batches), we can validate the 
refined bounds. When the bounds are validated, we obtain that Subre-
gions 1 and 2 posses batch failure rates of 0% and 0.009% (out of 105
batches), respectively. Hence, in practice, it may be concluded that, in 
the case where a small probability of violations is acceptable, enforcing 
a zero violation rate is a suboptimal policy since it may significantly re-
duce the operational region to effectively set-point control. Instead, one 
should permit a small violation rate in order to achieve a large increase 
in flexibility of the operational region.

An investigation of the violations observed in Subregion 2’s bounds 
reveals that the maximum number of uncertain scenarios that violated 
constraints, for any set of state profiles, was 1. Similarly, the maximum 
and average percentage change from the desired KPI value are 21.9% 
and 11.5%, respectively. Both subregions met the pre-defined tolerance 
of the sampled trajectory failure rate, being 0% and 0.9% (out of 1000 
randomly sampled sets of state profiles) for Subregions 1 and 2, respec-
tively. Consequently, the operational bounds for both subregions were 
shown highly robust to uncertainties.
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Fig. 7. Normalised state trajectories and refined bounds of Subregions 1 and 2, for Process Parameter 1 (a) and Process Parameter 2 (b).

Overall, based on this case study, the framework’s ability to gen-
erate several distinct optimal regions has been proven, each of which 
provides operational regions practically robust to uncertainties which 
can be analysed and ranked based on the characteristics preferred for 
a specific application. Furthermore, both operational regions provided 
a significant decrease in batch time compared to the current set-point 
control approach used in the manufacturing site, that is 38.6% in both 
cases. Through a rigorous investigation into the performance of each 
operational region, it would likely be recommended that Region 2 is 
more advantageous in execution due to its larger operational flexibility 
and similar robustness compared to Region 1. Although, in this work 
the methodology was defined for a dynamic batch system, it should be 
emphasised that this can also be applied for continuous systems, hence 
increasing the methodologies utility.

4.4.  Flexibility analysis

In the previous section, we explored the robustness and optimal per-
formance of each operational region. Now, we wish to investigate the 
flexibility of each of the nominal state profiles (i.e. the optimal state 
trajectories identified within each operational space) for the purpose of 
providing further information about the two operational regions. In par-
ticular, since it is known that raw material uncertainty contributes most 
to batch violations, we focus on testing the flexibility of each nominal 
state profile to this form of uncertainty. In this work, the method used 
to identify the combination of largest uncertainties that still results in 
no constraint violation is to apply a similar two-step optimisation frame-
work as discussed in 2.5. Specifically, we maximise the distance between 
the nominal process model parameter values (material uncertainty is 
represented by the process model parametric uncertainty as explained 
in Section 3), 𝜉𝜉𝜉𝑛𝑜𝑚𝑖𝑛𝑎𝑙, and the optimisation variables representing the 
largest parameter uncertainty, 𝜉𝜉𝜉𝑢𝑏 or 𝜉𝜉𝜉𝑙𝑏. With reference to Equation 
(5), one would exchange the flexible state variable terms, 𝑥f lexible,ub𝑗,𝑘 , for 
the respective uncertain parameters, 𝜉𝑖, ∀𝑖 = 1…𝑁𝜉 , where 𝑁𝜉 repre-
sents the total number of uncertain parameters. Using this method, the 
greatest positive and negative deviations from the nominal parameter 
values that continue to result in feasible operation can be found. The 
results of which are shown in Table 2 for all 14 uncertain parameters.

After analysis of the results in Table 2, it is ascertained that Subregion 
2 possesses greater flexibility with respect to raw material uncertainties, 
hence it is likely to provide more reliable operation in practice. Addi-
tionally, it is noted that both sets of nominal state profiles provide high 
robustness to parameter uncertainty, with 41% of the reported values 
in Table 2 being greater than the maximum uncertainties considered in 
this study (20% for 2 standard deviations), and 71% of the values be-

Table 2 
The largest allowable positive (ub) and negative (lb) %deviations from 
the nominal parameter values, for the two subregion’s nominal state 
profiles.

Parameter

 Max %change from nominal
 Subregion 1  Subregion 2
ub lb ub lb

1 18.9 19.2 39.9 21.0
2 19.8 38.1 39.0 39.0
3 39.9 18.9 18.9 21.2
4 26.3 18.1 19.1 21.1
5 5.5 5.2 5.7 6.3
6 5.5 5.2 5.7 6.3
7 18.3 17.2 18.9 21.0
8 5.5 5.1 5.7 6.3
9 19.9 19.0 33.6 25.4
10 39.4 37.4 40.0 39.7
11 35.4 36.9 22.4 37.1
12 18.3 17.2 19.0 21.4
13 18.3 17.2 19.0 21.0
14 18.3 17.2 19.0 21.1

ing greater than 18%. Explicitly, this means that the subregions are all 
robust to even the most extreme uncertainties expected to occur in oper-
ation. It can be seen that for model parameters 5, 6, and 8, both region’s 
nominal state profiles are vulnerable to their large deviations, however, 
as discussed in Section 3, these parameters have previously been iden-
tified not sensitive to the change of raw materials, thus in practice it is 
unlikely that uncertainties arise from these model parameters.

4.5.  Computational details of the case study

Table 3 shows the computation times for each of the individual steps 
in the framework for the specific purpose they achieve, where each step 
refers to the steps shown in Fig. 1.

Naturally, the computation times of these steps may differ depending 
on the specification of computational facility they are executed on.

In Section 4.1, the use of a moderate number of high-performing 
state trajectories is discussed, where the improvement in optimal space 
identification versus the increased computational cost limits the number 
of high-performing trajectories that can be generated. Although, ideally, 
with a large enough number of high-performing state profiles being ob-
tained, it may be possible even discover additional optimal operational 
spaces, for this study, the computational expense for generating a large 
number of high-performance solutions would render this idea impracti-
cal. This can be clearly reasoned from Table 3, as it takes an average of 



Chemical Engineering Science 309 (2025) 121429

11

Kay et al.

Table 3 
Computational expense for each respective step of the
methodology.

 Computation times
Step Function Order of

magnitude

Step 1 Per scenario tree generation 2min
Step 2 Per optimum generated 2h
Step 3 Clustering of optimum state profiles 

using k-means
1min

Step 4 Single nominal control strategy+Full 
bounds

4 h

Flexibility 
analysis

Full bounds per nominal trajectory 3min

2 hours to complete the optimisation problem when solving optimisa-
tion Problem (2) in Step 2. While other steps require negligible time to 
execute, Step 2 alone takes several days to complete. Despite the high 
computational cost, it is important to note that PFD development is typ-
ically performed offline in practice. As such, computational time is not 
a primary concern when determining the operational space for process 
design and optimisation.

5.  Conclusion

In conclusion, operational space control provides a robust and flex-
ible solution for integrating uncertainties into process product quality 
control to reliably meet key process constraints and product KPI. By 
combining flexibility and optimality, this approach supports the dis-
covery of operational regions that are not only reliable but also high-
performing across a wider range of uncertain scenarios. Unlike tradi-
tional set-point control, which restricts operations to narrow margins, 
operational space control enables broader process operation, allowing 
for adjustments in response to varying conditions without compromising 
on efficiency or quality, and reducing energy consumption.

A significant advantage of the currently proposed framework lies 
in its ability to systematically identify multiple optimal operational re-
gions within the entire design space. This feature allows process oper-
ators to gain valuable insights into a system’s operability, highlighting 
regions where the process is inherently more stable and easier to con-
trol. Such knowledge supports more informed decision-making and can 
enhance overall operational performance. The proposed framework was 
validated through a case study involving a dynamic batch mixing pro-
cess for the production of a consumer goods formulation. Results from 
this study indicate that the framework effectively manages uncertain-
ties for a real-world application, yielding economically advantageous 
process designs and reliable operational strategies that adhere to criti-
cal process constraints and key product quality.

Overall, this work introduces a novel combination of optimal and 
flexible design space identification with dynamic optimisation under 
uncertainty. The demonstrated methodology offers broad potential for 
application in various industries, particularly in contexts where conven-
tional control approaches struggle to accommodate the inherent vari-
ability of complex processes, or where it is difficult to achieve strict 
compliance with set-points. Consequently, this operational space con-
trol framework represents a meaningful advancement in modern pro-
cess quality control, pioneering more robust, adaptive, and economi-
cally viable process systems in industries facing increasing demands for 
sustainability, efficiency, and product quality.
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