Publications
JOURNAL PAPERS (SUBMITTED)
- L. Cannelli, M. Zhu, M. Schranz, A. Bemporad, and D. Piga, “D-GLISp: A distributed algorithm for preference-based black-box optimization in multi-agent systems,” 2025, submitted for publication.
- M. Zhu, O. Pennington, T. Pincam, M. Zarei, S. Kay, Y. Liu, M. Short, and D. Zhang, “A novel bioprocess control strategy under uncertainty via operational space identification,” 2025, submitted for publication.
- S. Kay, M. Zhu, A. Lane, J. Shaw, and D. Zhang, “A surrogate-enhanced framework for flexible and optimal operational space identification under uncertainty,” 2025, submitted for publication.
- Y. Xiao, M. Zhu, D. Tsaoulidis, and T. Chen, “Adaptive optimisation of experiments with early stopping using gaussian process regression,” 2025, submitted for publication.
JOURNAL PAPERS (IN PRESS)
JOURNAL PAPERS
- S. Kay, M. Zhu, A. Lane, J. Shaw, P. Martin, and D. Zhang, “A novel approach to identify optimal and flexible operational spaces for product quality control,” Chemical Engineering Science, 2025, vol. 309, no. 121429. paper-link, pdf
- M. Zhu and A. Bemporad, “Global and preference-based optimization with mixed variables using piecewise affine surrogates,” Journal of Optimization Theory and Applications, vol. 204, no. 26, 2025. paper-link, code, arXiv
- M. Zhu, A. Mroz, L. Gui, K. Jelfs, A. Bemporad, EA. del Río Chanona, and Y. Lee, “Discrete and mixed-variable experimental design with surrogate-based approach,” Digital Discovery, 2024, vol. 3, pp. 2589-2606, 2024. paper-link, code, ChemRxiv
- L. Cannelli, M. Zhu, F. Farina, A. Bemporad, and D. Piga, “Multi-agent active learning for distributed black-box optimization,” IEEE Control Systems Letters, vol. 7, pp. 1488–1493, 2023. paper-link, pdf, code
- M. Zhu, D. Piga, and A. Bemporad, “C-GLISp: Preference-based global optimization under unknown constraints with applications to controller calibration,” IEEE Trans. Contr. Systems Technology, vol. 30, no. 3, pp. 2176–2187, 2022. paper-link, pdf, code
CONFERENCE PAPERS (SUBMITTED)
CONFERENCE PAPERS
- S. Kay, M. Zhu, O. Pennington, and D. Zhang, “Machine learning-driven optimisation of operational spaces for uncertainty management in process industries,” in 14th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS 2025), IFAC-PapersOnLine, vol. 59, no. 6, pp. 241-246, Bratislava, Slovakia, 2025. paper-link
- M. Zhu, A. Bemporad, M. Kneissl, and H. Esen, “Learning critical scenarios in feedback control systems for automated driving,” in IEEE 26th Int. Conf. on Intelligent Transportation Systems (ITSC), Bilbao, Bizkaia, Spain, 2023. paper-link, pdf
- M. Zhu, A. Bemporad, and D. Piga, “Preference-based MPC calibration,” in European Control Conference, 2021. paper-link, pdf
BOOK CHAPTERS
- M. Zhu, O. Pennington, S. Kay, M. Zarei, M. Short, and D. Zhang, “Optimization-based operational space design for effective bioprocess performance under uncertainty,” Systems and Control Transactions, vol. 4, pp. 2291-2296, 2025. paper-link, pdf
- S. Kay, M. Zhu, A. Lane, J. Shaw, P. Martin, and D. Zhang, “Machine learning-aided robust optimisation for identifying optimal operational spaces under uncertainty,” Systems and Control Transactions, vol. 4, pp. 1041-1046, 2025. paper-link, pdf
- M. Zarei, M. Dolat, R. Murali, M. Zhu, O. Pennington, D. Zhang, M. Short, “Real-time dynamic optimisation for sustainable biogas production through anaerobic co-digestion with hybrid models,” Systems and Control Transactions, vol. 4, pp. 2423-2428, 2025. paper-link, pdf
- A. Molin, E. Aguilar, D. Nickovic, M. Zhu, A. Bemporad, and H. Esen, “Specification-guided critical scenario identification for automated driving,” 25th International Symposium on Formal Methods, 2023. paper-link, pdf
- M. Zhu, FL. Santamaria, S. Macchietto, “A general dynamic model of a complete milk pasteuriser unit subject to fouling,” in Computer Aided Chemical Engineering, vol. 48, pp. 247-252, 2020. paper-link, pdf
TECHNICAL REPORTS
- M. Zhu, D. Piga, and A. Bemporad, “C-GLIS: Global Optimization under Unknown Constraints,” 2021. pdf
THESES
- M. Zhu, “Global and preference-based optimization using surrogate-based methods”, Ph.D. dissertation, Systems Science, Track in Computer Science and Systems Engineering, IMT School for Advanced Studies Lucca (Scuola IMT Alti Studi Lucca), Lucca, Italy, May 2024. pdf
- M. Zhu, “A general dynamic model of a complete milk pasteuriser unit subject to fouling,” MSc. thesis, Imperial College London, London, UK, September 2019. pdf